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Project Description:

Our aim is to build a Multi-Agent Multi Objective environment,
solve it using Tabular and Deep RL methods, and apply the Deep
RL methods on an existing MARL environment (Predator-Prey).

For Tabular methods, we implemented Q-learning and for Deep
RL methods we implemented DQN, Double DQN, and
Advantage Weighted Regression.
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What is Multi-Agent RL?
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Why is Multi-Agent RL Challenging?

Various Information Structures
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Algorithms:

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0, 1], small £ > 0

Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A. observe R. S’
Q(S, A) < Q(S, 4) + a| R + ymax, Q(S",a) — Q(S, A)]
S5
until S is terminal

Q-Learning

Algorithm 1 Advantage-Weighted Regression

1: 7 < random policy
2: D+ 0
3: foriteration k = 1, ..., kpax do

4:  add trajectories {7; } sampled via 7, to D
5. |V,P + argminy Esaup “ ‘Rga — V(s)||2J

=3

Tht1 < arg max, Eg aup [log m(als) exp (% (R, — VkD(s))ﬂ

=

end for

Advantage Weighted Regression
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Algorithms:

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function  with random weights
for episode = 1, M do
Initialise sequence s; = {r;} and preprocessed sequenced ¢ = ¢(s1)
fori=1.7T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a; 0)
Execute action a,; in emulator and observe reward r; and image x;4
Set s;41 = 8¢, ay, T441 and preprocess ¢ y1 = O(s441)
Store transition (¢, a¢, r¢, ppy1) in D
Sample random minibatch of transitions (¢;, a;,r;, ¢;41) from D

Set y; — { T for terminal ¢4,
J ri +ymax, Q(¢jy1,a’;6) for non-terminal ¢ ;1
Perform a gradient descent step on (y; —|Q(¢;, a;; 0))* according to equation 3
end for
end for

DON

Algorithm 1 : Double Q-learning (Hasselt et al., 2015)
Initialize primary network (g, target network )y, replay buffer D, 7 << 1
for each iteration do
for each environment step do
Observe state s; and select ar ~ m(as. 5¢)
Execute a; and observe next state s;; and reward r; = R(s;, a)
Store (s;, a4, 74, 5;,1) in replay buffer D

for each update step do
sample e; = (8,04, 1y, 8441 ) ~ D
Compute target () value:
Q" (8. a¢) = ry + 7 QolSi41, argmaz,, Qg (541, a'))
Perform gradient descent step on () (ss, ;) — Qalst.at))”
Update target network parameters:
0 TxbB 4 (1—71)%8

Double DON




University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Environment: “Harry Potter in the Grid World”

Dementor < Goal 1
Pick up the wand
G2 / Dumbledore
Goal 2
Kill Voldemort
q\
Harry Potter
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Reward Dynamics

« (Going closer to the wand +1
« Going father from the wand -1

* Picking up the wand +10

»
<

Stepping into the
Dementor block -10

/

Going closer to Voldemort +1
Going farther from Voldemort -1
Killing Voldemort +25
Stepping into the
Voldemort block -10

Harry Potter \
10 7 A
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Challenges with Multiple Objectives:

Environment and training setup.

A single Q-table / Neural network won’t work.

Suggested Solution:

Ensure that if an objective needs to be completed before another you
don'’t give the agents the rewards for the second objective until the first is
completed.

Use as many Q-tables / Neural networks as there are objectives.

While training ensure that each Q-table / Neural network is updated for the
appropriate objectives. (Especially challenging with offline RL.)
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Random Agents Trained Agents
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Results

Comparison of Cumulative Rewards Per Episode (During Learning) for Harry Potter in Grid World

—— (Q-Learning
DQN
—— Double DQN
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Average Reward Per Episode

Results

Average Rewards Per Episode Per Iteration
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Environment: “Predator-Prey”

Blue blocks indicate the
predators capture range

Predator 1

Predator 2 - o
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Reward Dynamics

A single predator catches the prey: -0.5

Both predators catch the prey: +5
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Random Agents

Trained Agents




University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

relling mean reward Per Episcde Values

Results:

rolling mean rewards Per Episode

Rewards Per Episode
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Rolling mean reward Per Episode Values

Results:

Rolling mean rewards Per Episode

Rewards Per Episode
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Results

ROlling Rewards Per Episode (During Learning) for Predator Prey environment w0
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Average Reward Per Episode

Results:

Average Rewards Per Episode Per Iteration
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Key Observations / Summary

s The key feature for the MARL is for the agents to collaborate to achieve the goal.

/

** In the “Harry Potter in Grid World” environment both Harry and Dumbeldore have to attack

Voldemort at the same to defeat him as individually they aren’t strong enough to defeat Voldemort.

¢ To solve multiple objectives in the environment, we must implement different value approximation functions for

each objective.

J

< When implemented using a single value approximation function, the learning isn’t correct because

depending upon the current objectives a different action must be performed in the same state.

** When implemented using a different approximation function per objective, the agents are able to learn the

optimal policy. %
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THANK YOU!




