CSE 546: REINFORCEMENT LEARNING

Multi-Agent Reinforcement Learning

Nitin Kulkarni: 50337029 Sai Reddy: 50315301 Sehaj Grover: 50336839

> University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

Project Description:

Our aim is to build a Multi-Agent Multi Objective environment, solve it using Tabular and Deep RL methods, and apply the Deep RL methods on an existing MARL environment (Predator-Prey).

For Tabular methods, we implemented Q-learning and for Deep RL methods we implemented DQN, Double DQN, and Advantage Weighted Regression.

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

BACKGROUND

0

۵

D

What is Multi-Agent RL?

Single Agent RL

Multi-Agent RL

Why is Multi-Agent RL Challenging?

Joint Action Space

Game-Theoretic Effects

Credit Assignment

Lazy Agent Problem

Non-Markovian Nature of Environments

Non-Unique Learning Goals

Non-Stationarity

Scalability

Various Information Structures

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

IMPLEMENTATION

0

oα

 \mathbf{n}

Algorithms:

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S'$ until S is terminal

Algorithm 1 Advantage-Weighted Regression
1: $\pi_1 \leftarrow$ random policy
2: $\mathcal{D} \leftarrow \emptyset$
3: for iteration $k = 1,, k_{\text{max}}$ do
4: add trajectories $\{\tau_i\}$ sampled via π_k to \mathcal{D}
5: $V_k^{\mathcal{D}} \leftarrow \arg \min_V \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\left \left \mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V(\mathbf{s}) \right \right ^2 \right]$
6: $\pi_{k+1} \leftarrow \arg \max_{\pi} \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[\log \pi(\mathbf{a} \mathbf{s}) \exp \left(\frac{1}{\beta} \left(\mathcal{R}_{\mathbf{s}, \mathbf{a}}^{\mathcal{D}} - V_k^{\mathcal{D}}(\mathbf{s}) \right) \right) \right]$
7: end for

Q-Learning

Advantage Weighted Regression

Algorithms:

Algorithm 1 Deep Q-learning with Experience Replay Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} $\begin{array}{c} r_j \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) \end{array} \quad \text{for terminal } \phi_{j+1} \\ \text{for non-terminal } \phi_{j+1} \end{array}$ Set $y_j =$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

DQN

Algorithm 1 : Double Q-learning (Hasselt et al., 2015)
Initialize primary network Q_{θ} , target network $Q_{\theta'}$, replay buffer \mathcal{D} , $\tau \ll 1$
for each iteration do
for each environment step do
Observe state s_t and select $a_t \sim \pi(a_t, s_t)$
Execute a_t and observe next state s_{t+1} and reward $r_t = R(s_t, a_t)$
Store (s_t, a_t, r_t, s_{t+1}) in replay buffer \mathcal{D}
for each update step do
sample $e_t = (s_t, a_t, r_t, s_{t+1}) \sim \mathcal{D}$
Compute target Q value:
$Q^*(s_t, a_t) \approx r_t + \gamma \ Q_{\theta}(s_{t+1}, argmax_{a'}Q_{\theta'}(s_{t+1}, a'))$
Perform gradient descent step on $(Q^*(s_t, a_t) - Q_\theta(s_t, a_t))^2$
Update target network parameters:
$\theta' \leftarrow \tau \ast \theta + (1 - \tau) \ast \theta'$

Environment: "Harry Potter in the Grid World"

Challenges with Multiple Objectives:

- Environment and training setup.
- A single Q-table / Neural network won't work.

Suggested Solution:

- Ensure that if an objective needs to be completed before another you don't give the agents the rewards for the second objective until the first is completed.
- Use as many Q-tables / Neural networks as there are objectives.
- While training ensure that each Q-table / Neural network is updated for the appropriate objectives. (Especially challenging with offline RL.)

Random Agents

Trained Agents

Results

Comparison of Cumulative Rewards Per Episode (During Learning) for Harry Potter in Grid World

0

Results

Environment: "Predator-Prey"

Reward Dynamics

A single predator catches the prey: -0.5

Both predators catch the prey: +5

16

Random Agents

Trained Agents

-0

Results:

Percentage of episodes in which the Predators catch the Prey: 70.0 %

Results:

Percentage of episodes in which the Predators catch the Prey: 90.0 %

Results

-0

Results:

Percentage of episodes in which the Predators catch the Prey: 98.0 %

Key Observations / Summary

- The key feature for the MARL is for the agents to collaborate to achieve the goal.
 - In the "Harry Potter in Grid World" environment both Harry and Dumbeldore have to attack
 Voldemort at the same to defeat him as individually they aren't strong enough to defeat Voldemort.
- To solve multiple objectives in the environment, we must implement different value approximation functions for each objective.
 - When implemented using a single value approximation function, the learning isn't correct because depending upon the current objectives a different action must be performed in the same state.
 - When implemented using a different approximation function per objective, the agents are able to learn the optimal policy.

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

THANK YOU!

O

0

pa

0