Reinforcement Learning for Image Captioning

--Pengyu Yan

Back Ground

Generate natural language description for image

learning how

sur

to

beach

the

or

people

group

of

Previous Work

RNN-based Encoder-Decoder framework Auto regression way of generating caption

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn
- Environment: the given image I + the words predicted so far $\{w_1, ..., w_t\}$
- State: representation of the environment at *t*, $s_t = \{\mathbf{I}, w_1, ..., w_t\}$
- Action: the word to generate at t + 1, $a_t = w_{t+1}$
- Reward: the feedback for reinforcement learning

Proposed Method

Proposed Method

- We propose a decision-making framework for image captioning

 - Training using reinforcement learning with embedding reward
 - □ Testing using lookahead inference

Artificial Intelligence Institute

Image Captioning Proposed Method

Policy Net:

- Action based on current state

Value Net:

- Evaluate the policy and serve as global inference guidance

Implementation

- Policy Network
- Value Network
- Definition of Reward & Reward Network
- Reinforcement Learning -- A2C

LSTM (1 layer of lstm cell)

Implementation - Policy Network

Vocabulary: 9650 9650-class classification

Pretrained with Cross Entropy Loss

Artificial Intelligence Institute

Image Captioning

Implementation - Value Net

ResNet-50: Visual Feature Extraction LSTM: Caption Text feature Extraction

MLP: Process merged feature vector from two domain to generate the **value** according to the policy of current state

Pre-Training:

- Regression Problem
- Mean Square Error (MSE) Loss

Regress to Reward

Implementation - Reward Net

Reward Net:

Mapping the visual feature and caption text feature into a new embedding space, where:

- Positive pair of image and caption would be close to each other in embedding space
- **Negative** pair would be **far** from each other

Pre-trained with the distance loss of two vector within embedding space

Reward:

 $R_T = \frac{h_{T-1}(S) \cdot l_m(f_I)}{||h_{T-1}(S) \cdot l_m(f_I)|}$

Reinforcement - A2C

Pre-trained **policy net** as **Actor** Pre-trained **value net** as **Critic**

Well-trained **reward network** used to calculate **reward** (Reward net don't participate training process here)

Experiment and Result

Inference with Beam Search

Example of Result

No beam search:

a bathroom with a toilet sink and mirror

Beam search but without Reinforce:

a white toilet sitting in front of a white sink in a bathroom

Beam search with Reinforce:

a white toilet sitting in a bathroom next to a sink and a mirror on the wall

Example of Result

No beam search:

a city street with cars and cars and motorcycles

Beam search but without Reinforce:

an image of cars and cars on a city street at night time

Beam search with Reinforce:

an image of a busy city street with cars parked on the side of it

Quantitative Evaluation

Method	Bleu_1	Bleu_2	Bleu_3	Bleu_4	METEOR	ROUGE_L	CIDEr
Policy Net Only No beam search	0.4865	0.3110	0.1872	0.1123	0.1872	0.3831	0.3494
Policy Net Only With beam search	0.5010	0.3250	0.1983	0.1197	0.1888	0.3932	0.3637
A2C Reinforce With beam search Value as guidance	0.5957	0.4040	0.2570	0.1618	0.1841	0.4368	0.5369

Table 1: Quantitive Evaluation Result

Thanks for Listening!

