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• Background:
• Multi-agent RL includes more than 

one agent in the environment. These 
agents interact with the environment, 
obtain rewards and choose actions 
based on their own learning, or 
sharing one brain across them. The 
relationship of those agents can be 
cooperative, competitive and neither 
of these two.

 
• Project Description:

• Play with three Gym multi-agent RL 
environments which are Checkers-v0, 
Switch2-v0 and Switch4-v0, and solve 
them by Vanilla DQN, Dueling DQN, 
A2C and A3C, then discuss the 
performance of independent and 
central architectures of algorithms on 
different environments.

Background and Project Description
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• Checkers-v0:
• States: 3 × 8 grid world
• Actions: up, down, left, right and wait
• Rewards: 

• Red ball: one green square +5, one yellow square -5
• Blue ball: one green square +1, one yellow square -1 

• Main objective: The red ball should collect as much green 
squares as it can.

• Switch2-v0:
• States: 3 × 7 grid world, excluding black squares
• Actions: up, down, left, right and wait
• Rewards: +5 for reaching the ending position
• Main objective: To move to the ending position

• Switch4-v0:
• States: 3 × 7 grid world, excluding black squares
• Actions: up, down, left, right and wait
• Rewards: +5 for reaching the ending position
• Main objective: To move to the ending position

Checkers-v0

Switch2-v0

Switch4-v0

Introduction about the Environments
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• Vanilla DQN:

• Use neural network to approximate the Q-values.

• Dueling DQN:

• Separate the estimators by two new streams, one for the state value V(s) and the 

other for the advantage of each action A(s, a).

• A2C:

• Use the advantage function to reduce the variance of policy gradient.

• A3C:

• Execute a set of environments in parallel so that increasing the diversity of training 

data.

Implementation
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• We experiment with 2 architectural variants of each algorithm:

• Independent: Each Agent has a separate set of parameters for estimating the 

value/policy function.

• Central: There is a central network that takes as input the concatenated states of 

each agent, and estimates the overall policy/value function, which enables each 

agent to take action.

Experiment Setup

SA SB SC

SASBSC SBSASC SCSASB

NNA NNB NNC

QA QB QC
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SASBSC
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QABC

AA AB AC

   Independent Architecture            Central Architecture
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• Checkers-v0

Results and Analysis

• DQN family algorithms 
have higher max rewards 
value, compared with AC 
family algorithms.

• A3C has smaller variation 
than A2C.

• Less difference of central 
and independent 
architecture for AC 
algorithms, while central 
DQN and Dueling DQN 
have larger max rewards 
value. 
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• Switch2-v0

Results and Analysis

• DQN family algorithms 
have higher max rewards 
value, compared with AC 
family algorithms.

• The performance of A2C 
and A3C are similar.

• It seems that 
independent architecture 
benefits AC family 
algorithms, while central 
architecture benefits 
DQN family algorithms.
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• Switch4-v0

Results and Analysis

• DQN family algorithms 
have higher max rewards 
value, compared with AC 
family algorithms.

• It seems that A3C has 
smaller variation.

• Less difference of central 
and independent 
architecture for A2C, 
while for A3C, 
independent architecture 
seems unstable. For 
DQN family, it seems that 
independent architecture 
overperforms central 
architecture.
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• Summary table:

Results and Analysis

• DQN family algorithms almost always have higher rewards than AC family algorithms, no matter 
independent or central.

• Central architecture algorithms almost always have higher rewards than independent architecture 
algorithms in environments with lesser number of agents.
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Demo

Checkers-v0 Switch2-v0 Switch4-v0

https://docs.google.com/file/d/1RO7D75ONXh1he4uDavCYxdJP175TNSh7/preview
https://docs.google.com/file/d/1MdmWuuQHCJyeSnqGU_wxQcVHRttyhFJM/preview
https://docs.google.com/file/d/1il5ohFdfXErhuYosLRu6wc1KCSSgW3bi/preview
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• The performance of different algorithms on different environments may vary, therefore, we 

cannot say which algorithm is the best, it depends on the properties of the environment.

• It seems that central architecture is better than independent  architecture, in environments with 

fewer number of agents.

• It seems that DQN family algorithms tend to obtain higher rewards than AC family algorithms, 

this may because the simpler structures of DQN, so that easy to overestimate.

Summary
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Thank you !


