
CSE 546
FINAL PROJECT
Solving Several Multi-Agent RL
Environments using Different Algorithms
Sougata Saha, Zebin Li

December 8th, 2020

2

• Background and Project Description

• Introduction about the Environments

• Implementation

• Results and Analysis

• Summary

Table of Content

3

• Background:
• Multi-agent RL includes more than

one agent in the environment. These
agents interact with the environment,
obtain rewards and choose actions
based on their own learning, or
sharing one brain across them. The
relationship of those agents can be
cooperative, competitive and neither
of these two.

• Project Description:

• Play with three Gym multi-agent RL
environments which are Checkers-v0,
Switch2-v0 and Switch4-v0, and solve
them by Vanilla DQN, Dueling DQN,
A2C and A3C, then discuss the
performance of independent and
central architectures of algorithms on
different environments.

Background and Project Description

4

• Background and Project Description

• Introduction about the Environments

• Implementation

• Results and Analysis

• Summary

Table of Content

5

• Checkers-v0:
• States: 3 × 8 grid world
• Actions: up, down, left, right and wait
• Rewards:

• Red ball: one green square +5, one yellow square -5
• Blue ball: one green square +1, one yellow square -1

• Main objective: The red ball should collect as much green
squares as it can.

• Switch2-v0:
• States: 3 × 7 grid world, excluding black squares
• Actions: up, down, left, right and wait
• Rewards: +5 for reaching the ending position
• Main objective: To move to the ending position

• Switch4-v0:
• States: 3 × 7 grid world, excluding black squares
• Actions: up, down, left, right and wait
• Rewards: +5 for reaching the ending position
• Main objective: To move to the ending position

Checkers-v0

Switch2-v0

Switch4-v0

Introduction about the Environments

6

• Background and Project Description

• Introduction about the Environments

• Implementation

• Results and Analysis

• Summary

Table of Content

7

• Vanilla DQN:

• Use neural network to approximate the Q-values.

• Dueling DQN:

• Separate the estimators by two new streams, one for the state value V(s) and the

other for the advantage of each action A(s, a).

• A2C:

• Use the advantage function to reduce the variance of policy gradient.

• A3C:

• Execute a set of environments in parallel so that increasing the diversity of training

data.

Implementation

8

• Background and Project Description

• Introduction about the Environments

• Implementation

• Results and Analysis

• Summary

Table of Content

9

• We experiment with 2 architectural variants of each algorithm:

• Independent: Each Agent has a separate set of parameters for estimating the

value/policy function.

• Central: There is a central network that takes as input the concatenated states of

each agent, and estimates the overall policy/value function, which enables each

agent to take action.

Experiment Setup

SA SB SC

SASBSC SBSASC SCSASB

NNA NNB NNC

QA QB QC

SA SB SC

SASBSC

NN

QABC

AA AB AC

 Independent Architecture Central Architecture

10

• Checkers-v0

Results and Analysis

• DQN family algorithms
have higher max rewards
value, compared with AC
family algorithms.

• A3C has smaller variation
than A2C.

• Less difference of central
and independent
architecture for AC
algorithms, while central
DQN and Dueling DQN
have larger max rewards
value.

11

• Switch2-v0

Results and Analysis

• DQN family algorithms
have higher max rewards
value, compared with AC
family algorithms.

• The performance of A2C
and A3C are similar.

• It seems that
independent architecture
benefits AC family
algorithms, while central
architecture benefits
DQN family algorithms.

12

• Switch4-v0

Results and Analysis

• DQN family algorithms
have higher max rewards
value, compared with AC
family algorithms.

• It seems that A3C has
smaller variation.

• Less difference of central
and independent
architecture for A2C,
while for A3C,
independent architecture
seems unstable. For
DQN family, it seems that
independent architecture
overperforms central
architecture.

13

• Summary table:

Results and Analysis

• DQN family algorithms almost always have higher rewards than AC family algorithms, no matter
independent or central.

• Central architecture algorithms almost always have higher rewards than independent architecture
algorithms in environments with lesser number of agents.

14

Demo

Checkers-v0 Switch2-v0 Switch4-v0

https://docs.google.com/file/d/1RO7D75ONXh1he4uDavCYxdJP175TNSh7/preview
https://docs.google.com/file/d/1MdmWuuQHCJyeSnqGU_wxQcVHRttyhFJM/preview
https://docs.google.com/file/d/1il5ohFdfXErhuYosLRu6wc1KCSSgW3bi/preview

15

• Background and Project Description

• Introduction about the Environments

• Implementation

• Results and Analysis

• Summary

Table of Content

16

• The performance of different algorithms on different environments may vary, therefore, we

cannot say which algorithm is the best, it depends on the properties of the environment.

• It seems that central architecture is better than independent architecture, in environments with

fewer number of agents.

• It seems that DQN family algorithms tend to obtain higher rewards than AC family algorithms,

this may because the simpler structures of DQN, so that easy to overestimate.

Summary

17

Thank you !

