MULTI-AGENT RL

Alina Vereshchaka
CSE4/510: Reinforcement Learning
March 9, 2020
MDP

agent

state S_t

reward R_t

action A_t

Environment

S_{t+1}

R_{t+1}
Multi-agent Reinforcement Learning (MARL)

Source: Nowe, Vrancx & De Hauwere 2012
Axes of MARL I

Centralized:

- One brain / algorithm deployed across many agents
Axes of MARL I

Centralized:
- One brain / algorithm deployed across many agents

Decentralized:
- All agents learn individually
- Communication limitations defined by environment
Axes of MARL II

Prescriptive:

- Suggests how agents should behave
Axes of MARL II

Prescriptive:
• Suggests how agents should behave

Descriptive:
• Forecast how agent will behave
Axes of MARL III

Cooperative: Agents cooperate to achieve a goal

• Shared team reward
Axe of MARL III

Cooperative: Agents cooperate to achieve a goal
- Shared team reward

Competitive: Agents compete against each other
- Zero-sum games
- Individual opposing rewards
Axes of MARL III

Cooperative: Agents cooperate to achieve a goal
- Shared team reward

Competitive: Agents compete against each other
- Zero-sum games
- Individual opposing rewards

Neither: Agents maximize their utility which may require cooperating and/or competing
- General-sum games
Axes of MARL IV

Numbers of agents:
- One (single-agent)
Axes of MARL IV

Numbers of agents:

- One (single-agent)
- Two (very common)
Axes of MARL IV

Numbers of agents:
- One (single-agent)
- Two (very common)
- Finite
Ages of MARL IV

Numbers of agents:
- One (single-agent)
- Two (very common)
- Finite
- Infinite
Transportation Problem
Thank you!