Augmented
Random

Search

Presenters:
1. Gautam Suryawanshi
2. Prajit Krisshna Kumar

Reinforcement Learning — CSE 510

Model free RL algorithms

* Gives solutions for controlling dynamical
systems without need of actual physical
models

* This systems successfully learn to play video
games or games like GO and chess

* Not deployed in real world physical systems

Problems

We need to find a best method

Studies indicated that several RL methods are
not robust to changes in parameters.

Small change affects them a lot

Is not trustable to deploy in real world that
needs to control 100s of motors

New directions

* Evolution Strategies — derivative free
optimization method, parallelized training

* Natural policy gradients for training linear
policies
* ARS is combination of both

 Published in March, 2018 by a team
from University at California, Berkeley

* ARS is enhanced version of Basic
random search

History

BRS:

 Policy=mn6

 We add +vd and -vé to existing

policy(v<1 and it is noise) § is random
number from normal distribution

* Apply the actions and get the rewards
* Update the policy using ' =6 + a.A
e Where A=1/N * Z[r(6+Vd) - r(0-vd)]d

Motivation

One of the most mind-blowing algorithms in
reinforcement learning,

Up to 15 TIMES FASTER than other algorithms

with higher rewards in specific applications.

Does not require Deep Learning.

Algorithm

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

I

10:

Hyperparameters: step-size o, number of directions sampled per iteration N, standard devi-
ation of the exploration noise v, number of top-performing directions to use b (b < N is allowed
only for V1-t and V2-t)
Initialize: My =0 € RP*™ yo =0 € R™, and ¥y =1, € R"*", j =0.
while ending condition not satisfied do

Sample d1,0s,...,dn in RP*™ with i.i.d. standard normal entries.

Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies

Tk (@) = (M + vép)z
A {wj,ky_(m) = (Mj — I/(sk).’t
)

V2: Tjk,+(T) = (M; + viy) diag (Zj)_l/"’ (z — pj)
Tjk—(x) = (M; — véy) diag(E;)~"2(z — p;)

for k € {1,2,...,N}.

Sort the directions &y by max{r(m;x), 7(m;)}, denote by &) the k-th largest direction,
and by 7 (x),+ and 7 (1), the corresponding policies.

Make the update step:

b

Mgy = M+ 52> [r(ms,0,4) = (m5,00),-)] Ok
k=1

where o is the standard deviation of the 2b rewards used in the update step.

V2 : Set pt1, Xj+1 to be the mean and covariance of the 2NH(j + 1) states encountered
from the start of training.?

jegj+1
end while

Simplified Explanation

Add Random Noise(d) to the weights ©.
Run a test.

If reward improves keep the weights.
Otherwise discard.

Method of Finite Differences

Generate a random noise(d) of the same
shape of the weights (©)

Clone two versions of our weights.
Add the noise to ©[+], subtract from ©[-]

Test both versions for one episode each,
collect r[+], r[-]

Update the weights © += a(r[+] = r[-]). &
Test and repeat for maximum performance.

Training Loop

Generate num_deltas deltas and evaluate positive and
negative.

Run num_deltas episodes with positive and negative
variations.

Collect rollouts as (r[+],r[-],delta) tuples.
Calculate the standard deviation of all rewards.

Sort the rollouts by maximum reward and select the best
num_best deltas rollouts.

Step = sum((r[+] — r[-])*delta), for each best rollout.

Theta +=
learning_Rate/(num_best_deltas*sigma_rewards)*step

Evaluate: play an episode with the new weights to
measure improvement.

Results

* Episode 1

Results

* Episode 1000

Comparison with DDPG

* At 1000 episode

Comparison with PPO

* At 1000 episode

rewards

7000

G000

5000

40040

3000

2000

1000

—1000
0

Comparison

200

400 GO0 8O0
uns

1000

Score

ARS DDPG PPO

E000 T T T T 3500 . _DoPG . 1200 T T T T
5000 3000 1000
2500 | 800
4000
2000 | 600
3000
] L
g 1500 . a0
2000 § 1000} 1 200
1000 300 1 0
0 4
0 —200
oot | -400
- lu 00 I I I I —]_ﬂ OD
o 200 400 600 800 Woe 0 200 200 00 800 000 —600
Episade # 0 200 400 600 800 1000

Comparing rewards

 Time for ARS to run : 5630 seconds
* Time for PPO to run : 2142 seconds
 Time for DDPG to run : 9270 seconds

Humanoid

Bipedal Walker

rewards

Results of Swimmer

Comparison

— ddpg |

— ppo
— ARS ||

au ATYORTS

400 500

References

1. https://towardsdatascience.com/introduction-to-augmented-random-
search-d8d7b55309bd

https://arxiv.org/pdf/1803.07055.pdf)

Codes for DDPG and PPO from https://github.com/Anjum48/rl-
examples/

https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd
https://arxiv.org/pdf/1803.07055.pdf

