
Augmented
Random
Search

Presenters:

1. Gautam Suryawanshi

2. Prajit Krisshna Kumar

Reinforcement Learning – CSE 510

Model free RL algorithms

• Gives solutions for controlling dynamical
systems without need of actual physical
models

• This systems successfully learn to play video
games or games like GO and chess

• Not deployed in real world physical systems

Problems

• We need to find a best method

• Studies indicated that several RL methods are
not robust to changes in parameters.

• Small change affects them a lot

• Is not trustable to deploy in real world that
needs to control 100s of motors

New directions

• Evolution Strategies – derivative free
optimization method, parallelized training

• Natural policy gradients for training linear
policies

• ARS is combination of both

History

• Published in March, 2018 by a team
from University at California, Berkeley

• ARS is enhanced version of Basic
random search

BRS:

• Policy = π𝜃

• We add +𝛎𝜹 and -𝛎𝜹 to existing
policy(v<1 and it is noise) 𝜹 is random
number from normal distribution

• Apply the actions and get the rewards

• Update the policy using 𝜃ʲ⁺¹ = 𝜃ʲ + 𝝰.Δ

• Where Δ = 1/N * Σ[r(𝜃+𝛎𝜹) - r(𝜃-𝛎𝜹)]𝜹

Motivation

One of the most mind-blowing algorithms in
reinforcement learning,

Up to 15 TIMES FASTER than other algorithms
with higher rewards in specific applications.

Does not require Deep Learning.

Algorithm

Simplified Explanation

• Add Random Noise(𝛿) to the weights ϴ.

• Run a test.

• If reward improves keep the weights.

• Otherwise discard.

Method of Finite Differences

• Generate a random noise(𝛿) of the same
shape of the weights (ϴ)

• Clone two versions of our weights.

• Add the noise to ϴ[+], subtract from ϴ[-]

• Test both versions for one episode each,
collect r[+] , r[-]

• Update the weights ϴ += α(r[+] – r[-]). 𝛿

• Test and repeat for maximum performance.

• Generate num_deltas deltas and evaluate positive and
negative.

• Run num_deltas episodes with positive and negative
variations.

• Collect rollouts as (r[+],r[-],delta) tuples.

• Calculate the standard deviation of all rewards.

• Sort the rollouts by maximum reward and select the best
num_best_deltas rollouts.

• Step = sum((r[+] – r[-])*delta), for each best rollout.

• Theta +=
learning_Rate/(num_best_deltas*sigma_rewards)*step

• Evaluate: play an episode with the new weights to
measure improvement.

Training Loop

Results

• Episode 1

Results

• Episode 1000

Comparison with DDPG

• At 1000 episode

Comparison with PPO

• At 1000 episode

Comparing rewards

ARS DDPG PPO

• Time for ARS to run : 5630 seconds

• Time for PPO to run : 2142 seconds

• Time for DDPG to run : 9270 seconds

Humanoid

Bipedal Walker

Results of Swimmer

References
1. https://towardsdatascience.com/introduction-to-augmented-random-

search-d8d7b55309bd

2. https://arxiv.org/pdf/1803.07055.pdf)

3. Codes for DDPG and PPO from https://github.com/Anjum48/rl-
examples/

https://towardsdatascience.com/introduction-to-augmented-random-search-d8d7b55309bd
https://arxiv.org/pdf/1803.07055.pdf

