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Model free RL algorithms

• Gives solutions for controlling dynamical 
systems without need of actual physical 
models

• This systems successfully learn to play video 
games or games like GO and chess

• Not deployed in real world physical systems



Problems

• We need to find a best method

• Studies indicated that several RL methods are 
not robust to changes in parameters.

• Small change affects them a lot

• Is not trustable to deploy in real world that 
needs to control 100s of motors 



New directions

• Evolution Strategies – derivative free 
optimization method, parallelized training

• Natural policy gradients for training linear 
policies

• ARS is combination of both



History

• Published in March, 2018 by a team 
from University at California, Berkeley

• ARS is enhanced version of Basic 
random search

BRS:

• Policy = π𝜃

• We add +𝛎𝜹 and -𝛎𝜹 to existing 
policy(v<1 and it is noise) 𝜹 is random 
number from normal distribution

• Apply the actions and get the rewards

• Update the policy using 𝜃ʲ⁺¹ = 𝜃ʲ + 𝝰.Δ

• Where Δ = 1/N * Σ[r(𝜃+𝛎𝜹) - r(𝜃-𝛎𝜹)]𝜹





Motivation

One of the most mind-blowing algorithms in 
reinforcement learning, 

Up to 15 TIMES FASTER than other algorithms 
with higher rewards in specific applications.

Does not require Deep Learning.



Algorithm



Simplified Explanation

• Add Random Noise(𝛿) to the weights ϴ.

• Run a test.

• If reward improves keep the weights.

• Otherwise discard.



Method of Finite Differences

• Generate a random noise(𝛿) of the same 
shape of the weights (ϴ)

• Clone two versions of our weights.

• Add the noise to ϴ[+], subtract from ϴ[-]

• Test both versions for one episode each, 
collect r[+] , r[-]

• Update the weights ϴ += α(r[+] – r[-]). 𝛿

• Test and repeat for maximum performance.



• Generate num_deltas deltas  and evaluate positive and 
negative.

• Run num_deltas episodes with positive and negative 
variations.

• Collect rollouts as (r[+],r[-],delta) tuples.

• Calculate the standard deviation of all rewards.

• Sort the rollouts by maximum reward and select the best 
num_best_deltas rollouts.

• Step = sum((r[+] – r[-])*delta ), for each best rollout.

• Theta += 
learning_Rate/(num_best_deltas*sigma_rewards)*step

• Evaluate: play an episode with the new weights to 
measure improvement. 

Training Loop



Results

• Episode 1



Results

• Episode 1000



Comparison with DDPG

• At 1000 episode



Comparison with PPO

• At 1000 episode





Comparing rewards

ARS DDPG PPO



• Time for ARS to run : 5630 seconds

• Time for PPO to run : 2142 seconds

• Time for DDPG to run : 9270 seconds



Humanoid 



Bipedal Walker



Results of Swimmer
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