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HAS Main Principles

• Store data in small chunks for different Representations (resolution, 
bitrate, frame rate, codec)

• Monitor network conditions

• Adapt the transmission data rate
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Video Client Video Server

Request: 
next video chunk  at bitrate r

Response: 
video content

InputOutput
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Animation borrowed from Te-Yuan Huang (SIGCOMM ‘14) http://conferences.sigcomm.org/sigcomm/2014/doc/slides/38.pdf

Dynamic Streaming over HTTP (DASH)
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Regular ABR Algorithms

• Rate-based: pick bitrate based on predicted throughput
• FESTIVE [CoNEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’16]

• Buffer-based: pick bitrate based on buffer occupancy 
• BBA [SIGCOMM’14], BOLA [INFOCOM’16]

• Hybrid: use both throughput prediction & buffer occupancy
• PBA [HotMobile’15], MPC [SIGCOMM’15]
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Simplified inaccurate model leads to suboptimal performance



Why is ABR Challenging?

Network throughput 
is variable & uncertain
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Throughput

Video bitrate
Conflicting QoE goals

• Bitrate

• Rebuffering time

• Smoothness

Cascading effects 
of decisions
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Pensieve
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Pensieve learns ABR algorithm automatically through experience



Reinforcement Learning
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Goal: maximize the cumulative reward 

Agent Environment

Observe state 

Take action

Reward



Action 

Pensieve Design
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How to Train the ABR Agent

ABR agent

state

Neural Network

240P

480P

720P

1080P

policy 
πθ(s, a)

Take action a
next bitrate

Observe state s

parameter θ

estimate from 
empirical data

Training:

Collect experience data: trajectory of [state, action, reward]
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Traces for Generalization

3G network trace

• Trace generated 
from a Hidden 
Markov model

• Covers a wide 
range of average 
throughput and 
network variation

Synthetic trace 



Shortcomings of Existing ABRs

• Greedy to bitrate (Do not consider perceptual quality)

• Energy consumption generally not included

• Does not reflect real world implementations

• Quality models are linear and have some wrong assumptions
• Penalize all rebuffering events same (in the beginning or in the middle)

• Penalize all oscillations same (highest to lowest or highest to 2nd highest)

• Higher bitrate is always necessary for better experience
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Optimization Problem
How to optimize energy consumption without sacrificing quality of 

experience?
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Preliminary Results
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What we have?

• Information about representations
• File size 

• Quality metrics

• Power model 

• Real world network traces

• Simulator Environment
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Using Reinforcement Learning 

• Environment provides information for
• Energy consumption of each available option

• Quality metrics of each available option

• Past network conditions

• Current buffer conditions
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Using Reinforcement Learning 

• State Space
• Buffer size 

• Current chunk size/number

• Throughput

• Download time

• Rebuffer time

• Remaining chunks

• Action Space
• Different versions of the video for each chunk
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Using Reinforcement Learning 

• Reward model should contain
• Energy consumption

• Quality metrics

• Oscillations

• Rebuffering 
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Experiments

• On Pensieve
• Pensieve is trained with updated reward models

• VMAF-E, VMAF-Q, VMAF-EQ, VMAF-LN

• On DQN based model 
• Trainings with updated state space

• Trainings with different network architectures
• MLP, 1Conv1D+MLP, 2Conv1D+MLP

• Trainings with different reward models
• VMAF-LN, VMAF-E, VMAF-ES
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Pensieve Experiments
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Pensieve Training Results Avg Reward 10K ~ -232
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Pensieve Training Results Avg Reward 70K ~ -232
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DQN Experiments Different Network Traces

Multiple Traces – Avg reward ~ -20 Single Trace – Avg reward ~ 8
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DQN Experiments Different States 

St. Space with 5 components (avg 8) St. Space with 6 components (Avg 11)
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DQN with Different Neural Networks 

MLP Avg ~ -20 1 layer Conv1D + MLP Avg ~ -44
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DQN with Different Neural Networks 

MLP Avg ~ -20 2 layer Conv1D + MLP Avg ~ - 24
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DQN Different Reward Models
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DQN Different Reward Models
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Q&A
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