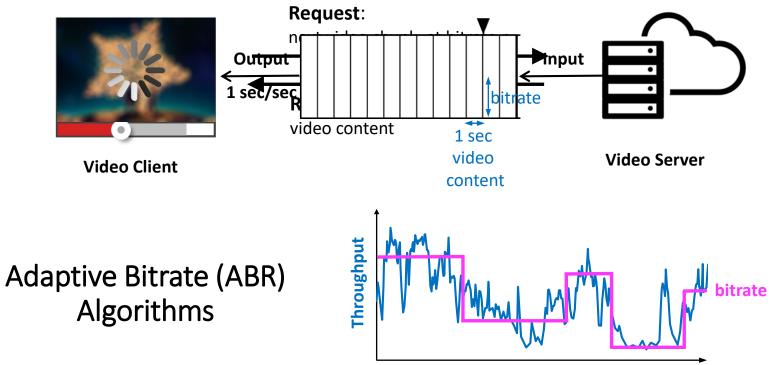
HTTP Streaming & Optimization Areas

HAS Main Principles

- Store data in small chunks for different Representations (resolution, bitrate, frame rate, codec)
- Monitor network conditions
- Adapt the transmission data rate

Dynamic Streaming over HTTP (DASH)

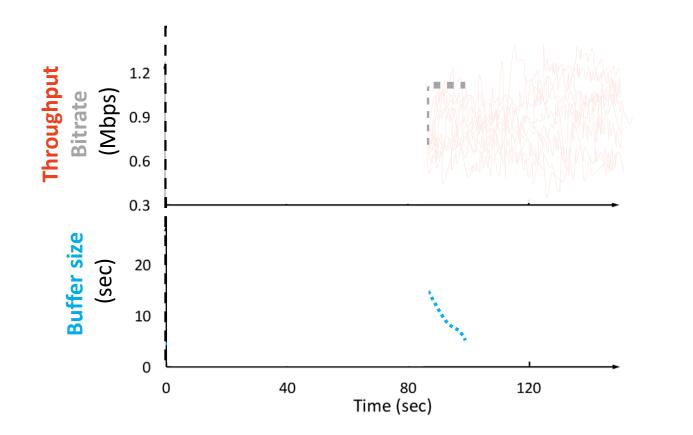


Regular ABR Algorithms

- Rate-based: pick bitrate based on predicted throughput
 FESTIVE [CONEXT'12], PANDA [JSAC'14], CS2P [SIGCOMM'16]
- Buffer-based: pick bitrate based on buffer occupancy
 - BBA [SIGCOMM'14], BOLA [INFOCOM'16]
- Hybrid: use both throughput prediction & buffer occupancy
 - PBA [HotMobile'15], MPC [SIGCOMM'15]

Simplified inaccurate model leads to suboptimal performance

Why is ABR Challenging?



Network throughput is variable & uncertain

Conflicting QoE goals

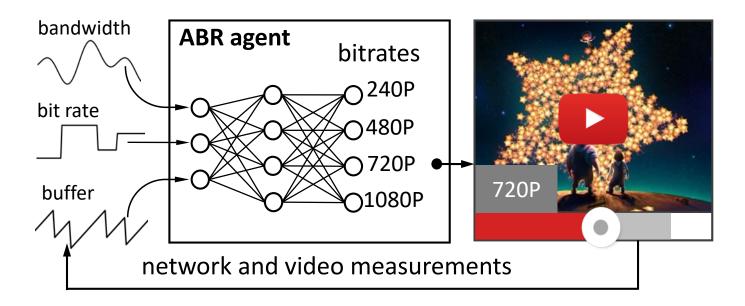
- Bitrate
- Rebuffering time
- Smoothness

Cascading effects of decisions

Neural Adaptive Video Streaming with Pensieve

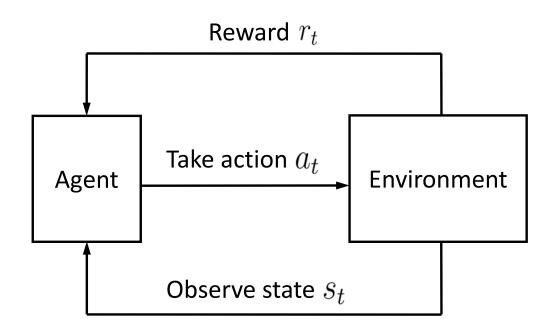
Hongzi Mao Ravi Netravali Mohammad Alizadeh

Pensieve

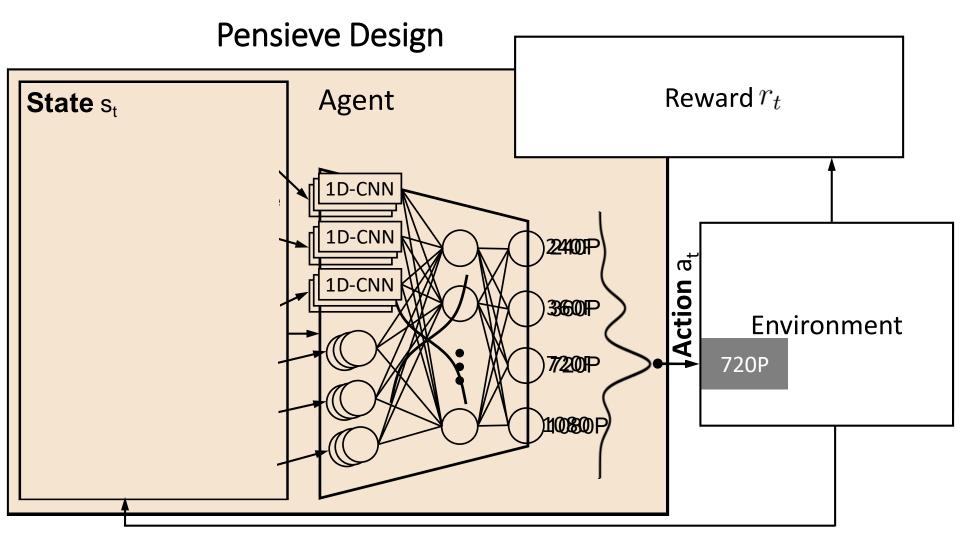


Pensieve learns ABR algorithm automatically through experience

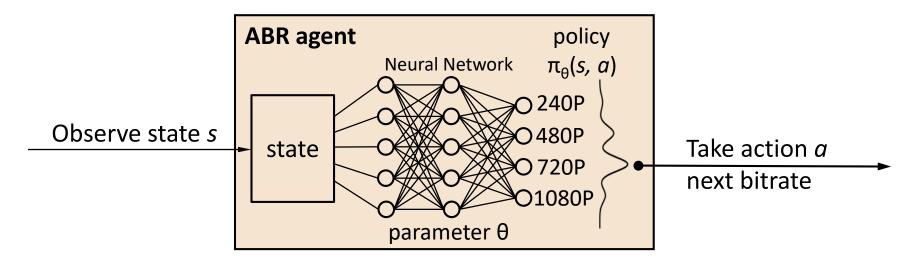
Reinforcement Learning



Goal: maximize the cumulative reward $\sum r_t$



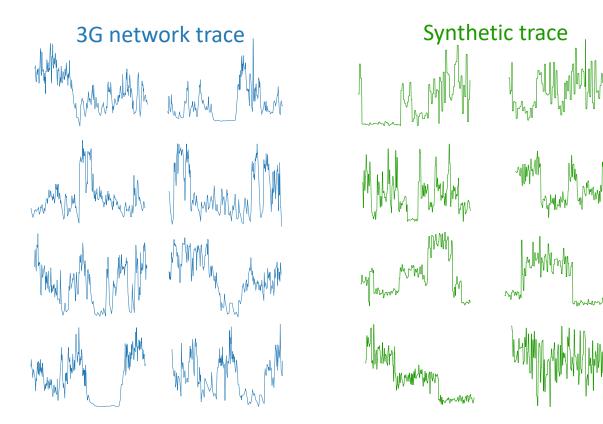
How to Train the ABR Agent



Collect experience data: trajectory of [state, action, reward]

Training:
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} \begin{bmatrix} r_t \\ t \end{bmatrix}$$
 estimate from empirical data

Traces for Generalization



 Trace generated from a Hidden Markov model

•

Covers a wide range of average throughput and network variation

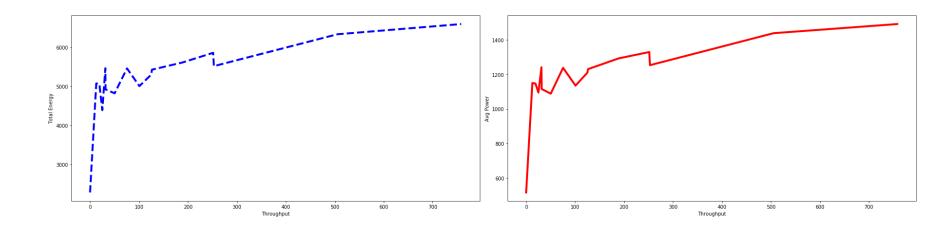
Shortcomings of Existing ABRs

- Greedy to bitrate (Do not consider perceptual quality)
- Energy consumption generally not included
- Does not reflect real world implementations
- Quality models are linear and have some wrong assumptions
 - Penalize all rebuffering events same (in the beginning or in the middle)
 - Penalize all oscillations same (highest to lowest or highest to 2nd highest)
 - Higher bitrate is always necessary for better experience

Optimization Problem

How to optimize energy consumption without sacrificing quality of experience?

Preliminary Results



What we have?

- Information about representations
 - File size
 - Quality metrics
 - Power model
- Real world network traces
- Simulator Environment

Using Reinforcement Learning

- Environment provides information for
 - Energy consumption of each available option
 - Quality metrics of each available option
 - Past network conditions
 - Current buffer conditions

Using Reinforcement Learning

- State Space
 - Buffer size
 - Current chunk size/number
 - Throughput
 - Download time
 - Rebuffer time
 - Remaining chunks
- Action Space
 - Different versions of the video for each chunk

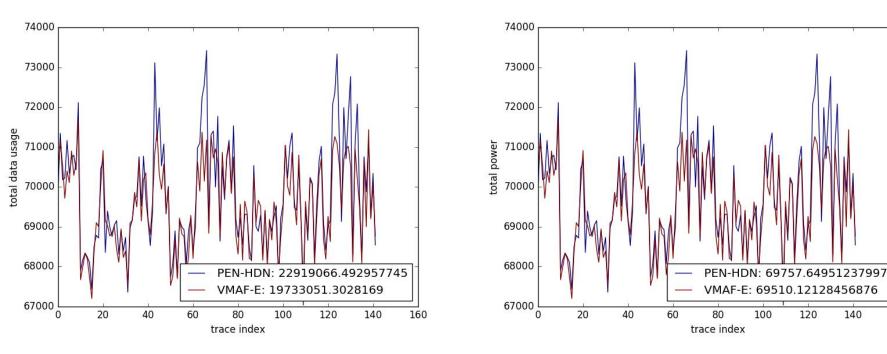
Using Reinforcement Learning

- Reward model should contain
 - Energy consumption
 - Quality metrics
 - Oscillations
 - Rebuffering

Experiments

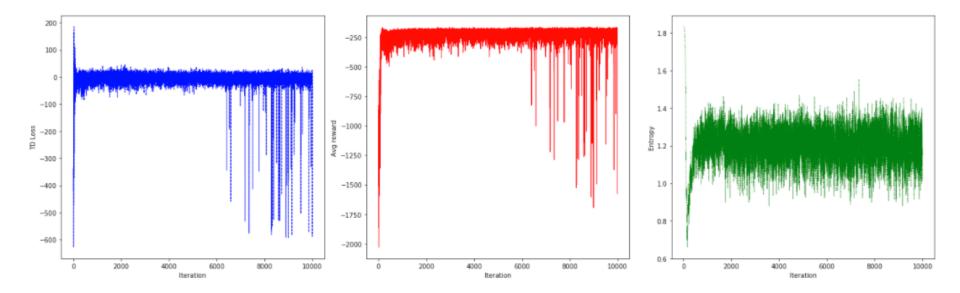
- On Pensieve
 - Pensieve is trained with updated reward models
 - VMAF-E, VMAF-Q, VMAF-EQ, VMAF-LN
- On DQN based model
 - Trainings with updated state space
 - Trainings with different network architectures
 - MLP, 1Conv1D+MLP, 2Conv1D+MLP
 - Trainings with different reward models
 - VMAF-LN, VMAF-E, VMAF-ES

Pensieve Experiments

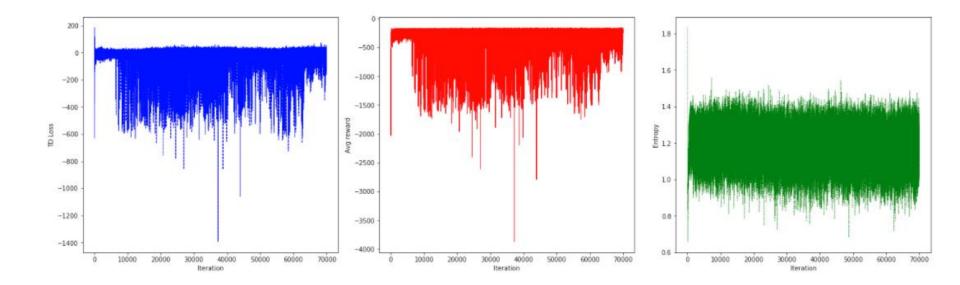


160

Pensieve Training Results Avg Reward 10K ~ -232

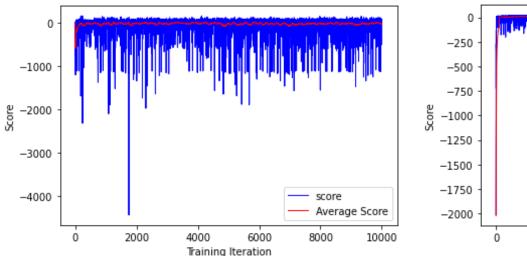


Pensieve Training Results Avg Reward 70K ~ -232

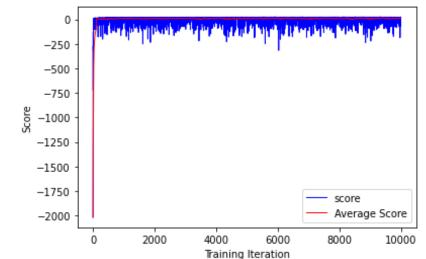


DQN Experiments Different Network Traces

Multiple Traces – Avg reward ~ -20

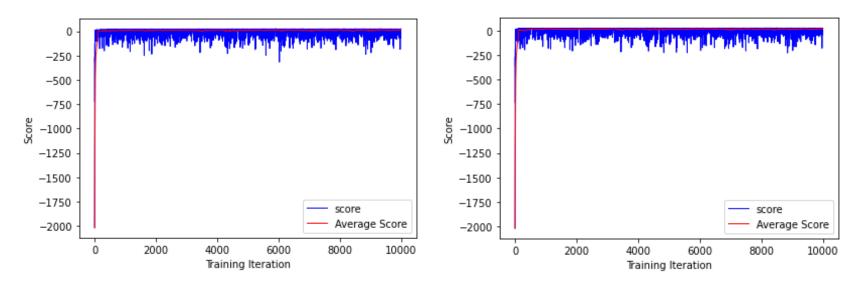


Single Trace – Avg reward ~ 8



DQN Experiments Different States

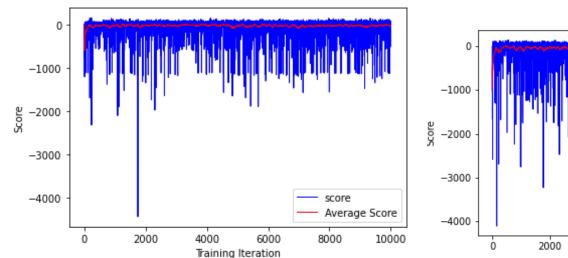
St. Space with 5 components (avg 8)



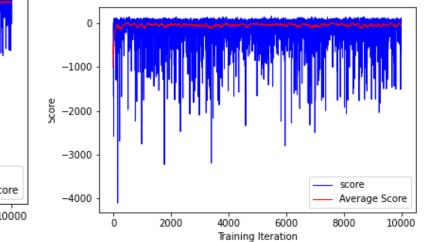
St. Space with 6 components (Avg 11)

DQN with Different Neural Networks

MLP Avg ~ -20



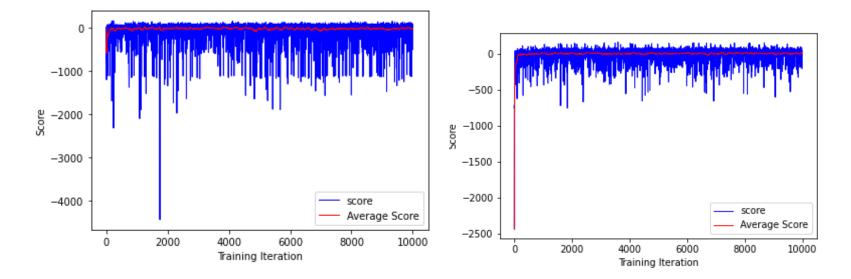
1 layer Conv1D + MLP Avg ~ -44



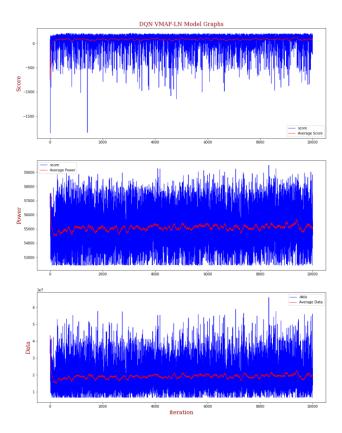
DQN with Different Neural Networks

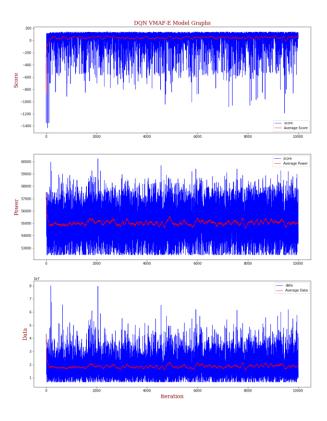
MLP Avg ~ -20

2 layer Conv1D + MLP Avg ~ - 24

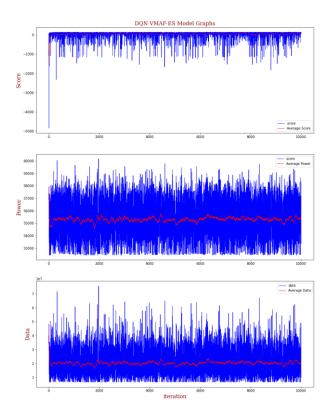


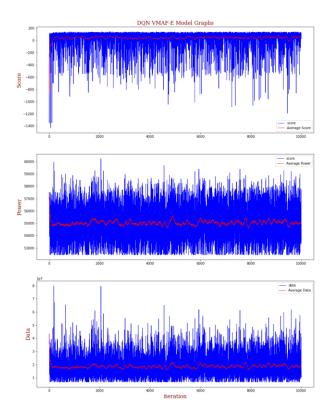
DQN Different Reward Models

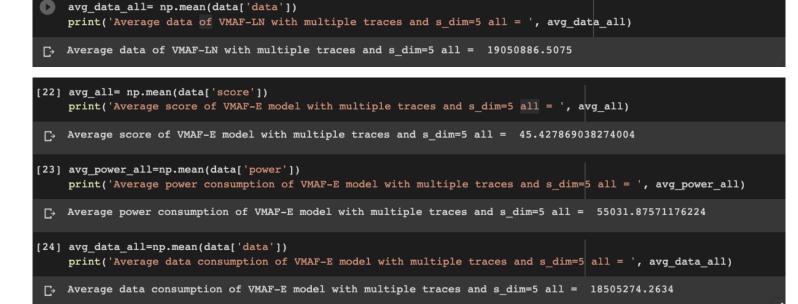




DQN Different Reward Models







```
\Gamma Average power of VMAF-LN with multiple traces and s dim=5 all = 55083.385851427374
```

[20] avg_all= np.mean(data['score'])

```
[21] avg_power_all= np.mean(data['power'])
print('Average power of VMAF-LN with multiple traces and s dim=5 all = ', avg power_all)
```

print('Average score of simple dqn(MLP) for VMAF-LN with multiple traces and s dim=5 all = ', avg all)

[25] avg_all= np.mean(data['score'])

print('Average score of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = ', avg_all)

[→ Average score of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = 45.31072084486101

[28] avg_power_all= np.mean(data['power'])
print('Average power of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = ', avg_power_all)

r→ Average power of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = 55302.963429216434

avg_data_all= np.mean(data['data'])
print('Average data of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = ', avg_data_all)

→ Average data of VMAF-ES model with energy in state with multiple traces and s_dim=5 all = 20268641.2828

[22] avg_all= np.mean(data['score'])
print('Average score of VMAF-E model with multiple traces and s_dim=5 all = ', avg_all)

[→ Average score of VMAF-E model with multiple traces and s_dim=5 all = 45.427869038274004

[23] avg_power_all=np.mean(data['power'])
print('Average power consumption of VMAF-E model with multiple traces and s_dim=5 all = ', avg_power_all)

→ Average power consumption of VMAF-E model with multiple traces and s_dim=5 all = 55031.87571176224

[24] avg_data_all=np.mean(data['data'])
print('Average data consumption of VMAF-E model with multiple traces and s_dim=5 all = ', avg data_all)

→ Average data consumption of VMAF-E model with multiple traces and s_dim=5 all = 18505274.2634

• Neural Adaptive Video Streaming with Pensieve Hongzi Mao, Ravi Netravali, Mohammad Alizadeh Proceedings of the 2017 ACM SIGCOMM Conference