
MULTI-AGENT REINFORCEMENT LEARNING 
ENVIRONMENT (and how I solved it)

Hoan Tran



Background

• Mimics real-world situation, where 
people both compete, and cooperate 
for common goal.

• Consider driving: when should we 
yield?

• Multi agents make the world more 
complex:

• The state changes depending on 
other agents.

• While learning, the state 
distribution probabilities is affected 
by other agents’ action, which is 
also changing rapidly. 



The environment

• Fully-observable, deterministic.

• Custom-defined grid 
environment

• Agents start at the bottom, and 
navigate to the top

• The destination are designed so 
the paths are intersected.

• Following the presentation, we 
will deal with a blank 5x5 grid 
and 3 agents.

An example of a 5x5 grid with 3 agents.



Rewards, 
Observation and 
Action Space

• No-OP, Left, Right, Up, Down

• Can observe the grid, the current locations of all agents, 
and the target.

• Independent reward:
• -1 at every steps, except at the target.

• -5 for illegal move.

• 0 at every steps, when reached the goal (while also cannot move)



Q-Learning

• Simple model-free, TD control method.

• Learns the state-value action.

• Have to manually set the exploration-exploitation parameter.

• Suffers when the dimension is too large.



Training and Results on 
Q-Learning

• Trained on 1 million steps, with epsilon rate of 0.1

• Each epoch is limited to max 500 steps

Number of steps until done Cumulative reward for all agents



Deep Q-Learning

• Approximate the Q function using (usually) Neural Network.
• Needs a replay buffer to ensure independent, non-correlated training 

samples.
• Require a lot of fine-tuning parameters:

• Exploration rate
• Update frequency
• Replay buffer size
• Etc

• Model design is also complicated, and dependent on the task. 
• Hardware requirement.
• To address the two last issues, we opt for a small environment, and a small 

model.



Model 
Architecture

• Simple FCN with two layers, each of size 128.

• Using Rectified Linear Unit activation function.

The FCN architecture (model not drawn to scale).



Training and Results

• Trained on 20000 steps.

• 5000 buffer size.

• Episode terminate at max 500 steps.

• Linear decay epsilon from 1 to 0.01 in 
10000 steps.

• Update freezing weight every 1000 steps.

Cumulative Reward

Step until solved



Adding flavor to the 
mix

• Can our simple model solve more 
complex tasks?

• Showing the varieties of the 
environment.
• Maximum of 4 agents (when render is 

needed).

• Adding randomized obstacle.



Navigate with 
randomized obstacle

• 200000 training steps. 30000 replay buffer size

• Epsilon linear decay until 150000 steps.

• Change the obstacle every 10 episode (max 200 steps per 
episode).

Steps to solve Cumulative reward



MORE AGENTS

• Agents seems to learn how to avoid collision, 
but not learned to reach target.

• Simply issue No-op to avoid collisions.



An easier version



Some failed 
attempt using PG
• Not converge well due to the stochasticity 

of the policy, and the agents.



THANKS FOR YOUR 
ATTENTION
Project environment were revised after failed attempt of 
solving.


