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Why do we need
equlvariance?

Blue and
Black lin
are

symmetric

eSs

Agent can

better estimate

consequences:

considers what it would i1f its
on the symmetrically opposite
path

Doesn’t have to re-learn

-

Nature by default has some
symmetry encoded into it

Learning a symmetry valued
representation 1s a better
model of the environment

Value function approximation
learns a simple representation
of model to make decision
(refer t-sne plot in original
DON paper)
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CNN vs G-CNN

CNN

One channel for
each translation
of filter

conv2d( .

Features are
different for bar

when rotated
http://scyfer.nl1/2016/12/13/data-efficient-deep-

P4-CNN

One channel for
each rotation +
translation of

filter

p4-conv2d( . , . ) =

Features are same when 4 P
rotated i -



http://scyfer.nl/2016/12/13/data-efficient-deep-learning-with-g-cnns/
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For any (u,v) € Z/2Z

Compute augmented filter bank:

‘cos(rm/2) —sin(rm/2) u]
g(r,u,v) = |sin(rn/2) cos(rm/2) v
0 0 1]

for r € {0,1,2,3}

Now compute convolution for augmented filter bank and store it in corresponding dime

For 4x84x84 channel 1image input, you get 4xKxNxN kernel as output q

Cohen, Taco, et.al, 2016. 5 N
Finzi, Marc, et alarXiv preprint ’ S
arxiv:2002.12880 (2020). i -
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* State representations are important for MDP
formulation

* Equivarilant representations are important for
Model free RL

. . * CNN : Get to the goal states
in left and right corners

* G-CNN : get to goal states
in any of the opposite
corner

* G-CNN has same representation for both grid
worlds )
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CNN vs G-CNN

structure
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A convolution 1s
computed by convolving
filter channel by
channel

F1l 8x5x5
Filter = g(Fl) =

32x5x5
F.Conv2d (1nput,
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G-convnet can learn using a much shallower network
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Results on
Atari

Episode Rewards
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Learning trace on Atarili breakout

Breakout

From DON paper : “The average total
reward metric tends to be very noisy
because the distribution of states
changes with the policy visits”

Equivariance in learned filters can
be useful in obtaining a better
state distribution thus less noisy
total reward metric



hs i

University at Buffalo
School of Engineering and Applied Sciences

Results:
Continued

t

Convnet

10 M frames

G_

1 M frames




Thank you

Questions?
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