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Multi-Agent Reinforcement Learning (MARL)

« Form of Reinforcement Learning (RL)
« Agent(s) learn to take actions that maximize a reward
derived from the environment
* Includes multiple independent actors (agents)
 Each agents actions may change the environment
e Changes to the environment could affect reward for
all agents
« Agents may interact to maximize their reward
* Intentional changes to the environment
* Direct agent-to-agent communication
« Cooperation vs competition
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Markov Decision Processes

« Typical RL problem

« Characterized by a Markov

Decision Process (MDP) Agent
« MDP Parameters state | | reward action
« S —set of possible states in Si R, A,

the environment PR .
 A—set of possible actions S.. | Environment |«
the agent can take !

* R —reward function

P — state to state transition
probability based on action
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Stochastic Games

« Combination of MDP with a
repeated game

« Agents must account for
actions of other agents

« Stochastic Game Parameters
« N agents
» A; - action set for agent i
« A —combined action
* a; Xa, X--Xay
R —rewards function for 4
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MARL Challenges

« Moving Target
 Reward for each agent can be affected by actions of other agents
« Agent’s action change over time
» Action-reaction loops can cause rewards to fluctuate

 Reward attribution

* Which action(s) from which agent(s) led to states with
large rewards

* Impossible to maximize each agent independently

e Curse of dimensionality
 More agents can increase observation and action spaces
« Complexity grows exponentially with space and state dimensions
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Multi Agent Grid-World

« Square grid-world of size s > 6 “p

Support n agents, n € 2,3,4 Ieft—‘m right

* Process n actions per timestep down
e Return n unigue rewards

00 05

50 59

Observation space Observation Space Action Space
« Current agent position [row, col]

Action Space
* 5 possible actions

* Move up/right/down/left, don't move

Enable agent-to-agent communication 2

 Agents should be able to share their
location with other agents Agent Communication 10
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Task: Enemy Containment

* n agents coordinate to “contain” a static enemy
* View environment as city streets

» Location of enemy is neighborhood
Infected with a virus

* Agents learn the best location to
place testing stations

« Enemy is contained when surrounded on all
sides, game terminates

* Reward Function
e —2ifdsy =d;
e —1ifdiyq <d;
e 0ifdiyq =1

11
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Agents

Compare performance of two types of agents
» Tabular Q-Learning (TQ)
 Deep Q-Network (DQN)

Agent Inputs
* Observation: Current location

« Communication: n — 1 other agent
locations

Agent Outputs
* Next action
For size s with n agents and a actions
« Q-table size: s> xn? X a
 DON input layer of size 2n
2 Dense RelLU layers of size 48

a = 5 actions

n? times

13
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Training

 All agents trained for 1000 epochs
e ¥y =0.95 10
e a=0.05

« Exponential ¢ decay
* ¢ =1.0 06 1
* €min = 0.03
e 60 =0.005

* At each iteration we recorded the score and 02-
learned movements for each agent

e Score = total cumulative reward for 001, ' ' e s -

0 200 400

one epoch Episode

 Learned movements recorded with
e = 0, greedy

Epsilon per Epoch

0.8 1

Epsilon

0.4 1

14
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Results

* Resultsforn =2

 Plots of score with averaging over a sliding
window of size 10

» Final learned path
« Agents shown in yellow and green
 Enemy shown in blue

« Both TQ and DQN agents converge to the
same optimal path

* DQN agents learn much more quickly, but
with slightly more noise
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Results n = 3

Cumulative Reward per Epoch
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Ana]ysm
* Inall cases n = 2,3,4 the tabular and DQN agents learned a path = W*‘JM
from their starting locations to a containment position || Wm
* DQON achieved the same paths, but with less training time T | |”m |
« Scores reach optimal values at earlier epoch e
 Difference of ~400 epochs for n = 3,4 =] mwwm

« Improvement likely due to curse of dimensionality
» Tabular agents must visit and learn each of s% x n* x A
a values independently | W
* DON agents update weights on every iteration WMWWWW
« Use same weights to predict Q-Values for every state- WMWMWWM
action pair e s —
+ Allows DQN agents to generalize to unseen states S MWW

Episode

» Greatly improves training sample efficiency TQ an DON scores, n = 4 17
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Lorem ipsum dolor sit amet, consectet

adipiscing elit. Mauris vehicula a dui in 6
neque dignissim, in aliquet nisl varius.
Sed a erat ut magna vulputate feugiat.
Quisque varius libero placerat erat and
lobortis congue. Integer a arcu vel ante 3
bibend and et scelerisque.

Data Analysis

neque dignissim,

and in aliquet nisl 0
et umis varius. Category Category Category Category

m Series 1 m Series 2 B Series 3
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Graphic elements

Copy and paste these graphic elements to give your presentation a touch
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