MULTI AGENT REINFORCEMENT LEARNING

Peter M. VanNostrand, 05/07/2020 CSE 410 Reinforcement Learning

School of Engineering and Applied Sciences

- 1. What is MARL?
- 2. MDPs and Stochastic Games
- 3. Environment Implementation
- 4. Experimentation
- 5. Results

- 1. What is MARL?
- 2. MDPs and Stochastic Games
- 3. Environment Implementation
- 4. Experimentation
- 5. Results

Multi-Agent Reinforcement Learning (MARL)

- Form of Reinforcement Learning (RL)
 - Agent(s) learn to take actions that maximize a reward derived from the environment
- Includes multiple independent actors (agents)
 - Each agents actions may change the environment
 - Changes to the environment could affect reward for all agents
- Agents may interact to maximize their reward
 - Intentional changes to the environment
 - Direct agent-to-agent communication
 - Cooperation vs competition

- 1. What is MARL?
- 2. MDPs and Stochastic Games
- 3. Environment Implementation
- 4. Experimentation
- 5. Results

Markov Decision Processes

- Typical RL problem
- Characterized by a Markov
 Decision Process (MDP)
- MDP Parameters
 - S set of possible states in the environment
 - A set of possible actions the agent can take
 - R reward function
 - P state to state transition probability based on action

Stochastic Games

- Combination of MDP with a repeated game
 - Agents must account for actions of other agents
- Stochastic Game Parameters
 - \mathcal{N} agents
 - A_i action set for agent i
 - *A* combined action
 - $a_1 \times a_2 \times \cdots \times a_n$
 - *R* rewards function for *A*

MARL Challenges

- Moving Target
 - Reward for each agent can be affected by actions of other agents
 - Agent's action change over time
 - Action-reaction loops can cause rewards to fluctuate
- Reward attribution
 - Which action(s) from which agent(s) led to states with large rewards
 - Impossible to maximize each agent independently
- Curse of dimensionality
 - More agents can increase observation and action spaces
 - Complexity grows exponentially with space and state dimensions

- 1. What is MARL?
- 2. MDPs and Stochastic Games
- 3. Environment Implementation
- 4. Experimentation
- 5. Results

Multi Agent Grid-World

- Square grid-world of size $s \ge 6$
- Support *n* agents, $n \in 2,3,4$
 - Process *n* actions per timestep
 - Return *n* unique rewards
- Observation space
 - Current agent position [row, col]
- Action Space
 - 5 possible actions
 - Move up/right/down/left, don't move
- Enable agent-to-agent communication
 - Agents should be able to share their location with other agents

Task: Enemy Containment

- *n* agents coordinate to "contain" a static enemy
 - View environment as city streets
 - Location of enemy is neighborhood infected with a virus
 - Agents learn the best location to place testing stations
- Enemy is contained when surrounded on all sides, game terminates
- Reward Function
 - -2 if $d_{t+1} \ge d_t$
 - -1 if $d_{t+1} < d_t$
 - 0 if $d_{t+1} = 1$

- 1. What is MARL?
- 2. MDPs and Stochastic Games
- 3. Environment Implementation
- 4. Experimentation
- 5. Results

Agents

- Compare performance of two types of agents
 - Tabular Q-Learning (TQ)
 - Deep Q-Network (DQN)
- Agent Inputs
 - Observation: Current location
 - Communication: n-1 other agent locations
- Agent Outputs
 - Next action
- For size *s* with *n* agents and *a* actions
 - Q-table size: $s^2 \times n^2 \times a$
 - DQN input layer of size 2n
 - 2 Dense ReLU layers of size 48

Training

- All agents trained for 1000 epochs
 - $\gamma = 0.95$
 - *α* = 0.05
- Exponential ϵ decay
 - $\epsilon_0 = 1.0$
 - $\epsilon_{min} = 0.03$
 - *δ* = 0.005
- At each iteration we recorded the score and learned movements for each agent
 - Score = total cumulative reward for one epoch
 - Learned movements recorded with $\epsilon = 0$, greedy

Results

- Results for n = 2
- Plots of score with averaging over a sliding window of size 10
- Final learned path
 - Agents shown in yellow and green
 - Enemy shown in blue
- Both TQ and DQN agents converge to the same optimal path
- DQN agents learn much more quickly, but with slightly more noise

Tabular

DQN

University at Buffalo School of Engineering and Applied Sciences

Tabular

DQN

Tabular

DQN

1000

Step 4

Step 8

800

Analysis

- In all cases n = 2,3,4 the tabular and DQN agents learned a path from their starting locations to a containment position
- DQN achieved the same paths, but with less training time
 - Scores reach optimal values at earlier epoch
 - Difference of ~400 epochs for n = 3,4
- Improvement likely due to curse of dimensionality
 - Tabular agents must visit and learn each of $s^2 \times n^2 \times a$ values independently
 - DQN agents update weights on every iteration
 - Use same weights to predict Q-Values for every stateaction pair
 - Allows DQN agents to generalize to unseen states
 - Greatly improves training sample efficiency

THANK YOU! QUESTIONS?

Click to add title

Lorem ipsum dolor sit amet, consectet adipiscing elit. Mauris vehicula a dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius libero placerat erat and lobortis congue. Integer a arcu vel ante bibend and et scelerisque.

> neque dignissim, and in aliquet nisl et umis varius.

Graphic elements

Copy and paste these graphic elements to give your presentation a touch of color. Only use the official UB brand color palette. For more information, please visit <u>www.buffalo.edu/brand/creative/color/color-palette</u>.

