
‘-

1

Salil Dabholkar
50321748

Exploring Deep RL 
Algorithms



‘-

2

● Most of the current research in RL is restricted to applications in 

highly constrained environments like games

● These environments have specific rules and structure which 

make it easy to design states, rewards, etc.

● But what about actual real world scenarios?

● They are often much messy than games, and have several edge 

cases which can’t be explicitly modelled.

● I wanted to see how RL algorithms perform in such a real-world 

scenario

● Thus, my primary motivation and purpose for this project was to 

create a real-world scenario, explore how it could be formulated 

as a RL problem, and attempt to solve it using a basic algorithm.

Motivation



‘-

3

● DARPA Urban Challenge remains the largest demonstration of

autonomous vehicle technology

● But it excludes many capabilities and requirements critical for

actual driving in cities (like pedestrians,bicyclists, traffic)

● Autonomous Driving is a huge space and consists of multiple

scenarios (signal following, sign detection, lane following, etc).

● There have been attempts to solve it end-to-end using Deep

Learning but training requires a lot of data, computation and time.

● Also most (current) methods approach it as a “single actor

problem“ where only one car is being trained.

● But if we are going autonomous, why not have them

communicate?

Autonomous Driving



‘-

4

● That’s where Connected Autonomous Driving (CAD) comes into 

picture.

● Connected Autonomous Vehicles utilize communication systems 

to improve transportation by enabling cooperative functionalities.

■ It has the ability to share and fuse information gathered from 

vehicle sensors to create a better understanding of the 

surrounding.

■ It also enables groups of vehicles to drive in a coordinated 

way which results in a safer and more efficient driving.

● However, currently there is still a gap in understanding how and 

to what extent connectivity can contribute in improving the 

efficiency, safety and performance of autonomous vehicles.

Connected Autonomous Driving



‘-

5

My Environment

● 3 -way stop sign controlled intersection

● Front-view on top-left

● Normally, one car goes while the rest stop

● Is that optimal?

● What if the car at the bottom wanted to 

turn right?

● Does it need to wait?

● What if the cars could communicate?



‘-

6

● The environment was created using macad-gym which is like a 

gym wrapper over the CARLA (Car Learning to Act) simulator.

● I used the three way intersection scenario where the bottom car is 

trying to turn right, top car going straight, and right car turning left.

● The primary aim was to avoid collisions and secondary aim was 

to get the cars to cross as quickly as possible.

More details



‘-

7

About Macad-gym taxonomy



‘-

8

● Observation space: The observation for each agent is a 168*168*3 

RGB image captured from the camera mounted on the car

● Action space: 9 Discrete actions:

i. Accelerate

ii. Brake

iii. Right

iv. Left

v. Acc. Left

vi. Acc. Right

vii. Brake Right

viii. Brake Left

ix. Coast

Environment Description



‘-

9

The rewards come from CARLA itself and they were defined as follows:

1000 (Dt-1 − 1 − Dt) + 0.05 (Vt − Vt−1) − 0.00002 (Ct − Ct−1) − 2(SWt − SWt−1) − 2 (OLtOLt−1)

• D: distance traveled towards the goal D in km

• V: speed in km/h

• C: collision damage

• SW: intersection with sidewalk

• OL: intersection with opposite lane

Rewards



‘-

10

● Shared Parameters: parameters of each agent’s policy can be 

shared

● Shared Observations: Reduces the gap between the 

observation and the true state

● Shared Experiences: This enables collective experience replay 

which can theoretically lead to gains in a way similar to distributed 

experience replay.

● Shared policy: If all the vehicles follow the same policy π, it 

follows that the learning objective for each of the agents can be 

simplified

Connectivity



‘-

11

The project was setup and executed on UB CCR and new conda 

environment

● Installing CARLA

■ I used CARLA 0.9.4 –

https://carla.readthedocs.io/en/latest/download/ 

■ Extracted all in ~/software/ 

■ set the CARLA_SERVER environment variable 

● Following Python packages were used: 

■ tensorflow 1.14, tensorboard 1.14, ray 0.6.4, macad-gym 0.1.2

● Setup the env in using a json like config file

● Create an agent and execute it normally like with any other gym 

environment

Setting up Project



‘-

12

● After setting it up, I solved the environment using basic Policy 

Gradient algorithm using 2 values of γ: 0.7 and 0.9

● I made a detailed study of these two experiments on factors like 

rewards earned, episodes, processing time, and resource 

consumption

● Training on server and then getting a screenshot is tricky but I 

managed to capture one good working example

Experiments



‘-

13

γ = 0.7 in orange and γ = 0.9 in blueResults - Rewards

Min Rewards Max RewardsMean Rewards

γ = 0.7 is always better and monotonous, indicating a stable training performance. A thing of note is that the min reward for γ = 0.9 

is always better, indicating that its performance is always better in the worst case.



‘-

14

γ = 0.7 in orange and γ = 0.9 in blueResults - Episodes

Mean Episode Length

The mean length for episodes is similar for both γ values



‘-

15

γ = 0.7 in orange and γ = 0.9 in blueResults - Performance

Performance-wise, γ = 0.7 gives higher throughput and 

takes less time than γ = 0.9

A. Inference time (ms)

B. Processing time (ms)

C. Learning throughput

D. Learning time



‘-

16

γ = 0.7 in orange and γ = 0.9 in blueResults - Resources

Resource utilization is same for both. 

This is as expected because most of the resources are used for the CARLA 

simulation and the neural net.

γ value doesn’t have any significant impact on it.

As seen from all graphs, γ = 0.7 

was also faster and so completed 

more iterations than γ = 0.9 in the 

same time



‘-

17

Results - Example



‘-

18

Salil Dabholkar
50321748

Thank you!


