
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#0001
ECCV

#0001

Cracking PHYRE with a World Model

Sheng Liu1

University at Buffalo, SUNY

Abstract. The ability to reason about physics is crucial for intelligent
agents to interact with the environment. However, not much progress
has been made in endowing machines with such an ability [1]. We pre-
sume that the lack of progress is due to the lack of an explicit world
model. Inspired by the superior performance world model achieved on
various benchmarks in OpenAI Gym [2], we propose to explicitly model
the physical world with a novel world model, which is composed of a
Perceptor (P) and an Imaginator (I). The world model is capable of per-
ceiving environmental changes and predicting plausible evolution of the
environment based on its perceived information. To validate the effective-
ness of the proposed world model, we conduct experiments on PHYRE,
i.e., a benchmark for physical reasoning, the results show that the world
model is able to help an agent reason about physics.

Keywords: World model, Physical reasoning, Actor critic

1 Introduction

Humans, even children who have not taken a single physics course, are able to
reason about physics. However, intelligent agents struggle with physics, including
those equipped with state-of-the-art reinforcement learning (RL) algorithms,
e.g., REINFORCE [5], DQN [8], A3C [7], PPO [9]. The goal of this project is to
design a novel world model which is able to endow an agent with the ability to
master laws of physics and leverage the mastered laws to solve challenging tasks
in unseen environments.

The world model we propose is composed of two components, i.e., a Percep-
tor and an Imaginator. The Perceptor is responsible for processing the visual
information the agent observes and the Imaginator is responsible for hallucinat-
ing future observations of the environments based on the information that the
Perceptor provides. In order to generate high quality predictions, the Imaginator
has to understand Newton’s law of motion as objects in environments defined in
PHYRE move following Newton’s law of motion. With the help of world model,
we will train a rather simple agent using actor critic algorithm.

2 Related Work

Bakhtin et al. [1] proposed the task of PHYRE. As PHYRE is a rather new
topic, [1] is the only related work and the only baseline with which we could



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#0001
ECCV

#0001

2 Sheng Liu

compare. Specifically, Bakhtin et al. designed a novel benchmark composed of
50 classical physical puzzles. An agent has to master laws of physics in order to
solve the puzzles.

Ha et al. [3, 2] proposed the concept of world model and tested it in environ-
ments defined in OpenAI Gym. It improves sample efficiency of state-of-the-art
RL algorithms [10].

Encoder Decoder

Fig. 1. An illustration of the autoencoder which is used to train the Perceptor. The
autoencoder is composed of an encoder i.e., the Perceptor and a decoder, both of
which are convolutional neural networks (CNNs). The encoder encodes its input, i.e.,
an image, into a feature vector, and the decoder decodes the feature vector into an
image. The objective of the autoencoder is to reconstruct its input from the feature
vector, thus allowing us to train it in an unsupervised manner.

3 Methodology

Our goal is to design a novel world model which is able to reason about physics
(at least Newtonian mechanics as the motion of objects in environments defined
in PHYRE follows Newtonian mechanics). Ideally, an agent equipped with the
world model should be able to solve the 2D physical puzzles from PHYRE in a
sample efficient way.

3.1 Rules of PHYRE

PHYRE contains a set of physical puzzles. The agent is allowed to add a ball
(a red ball) to the environment. The goal is to control the position and size of
the red ball the agent adds to the environment to ensure that the blue object
and the green object in the environment contact each other when a trial ends,
i.e., all the objects stop moving. The objects moves following Newton’s law of
motion. The objects in black is not movable.

3.2 Notations and Symbols

• observation ot: observation at timestep t (ot) is composed of n + 1 images
whose resolution is 256 × 256, i.e., ot = {x0,x1,x2, . . . ,xn},x ∈ R256×256,



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#0001
ECCV

#0001

Cracking PHYRE with a World Model 3

∀x ∈ ot1. x0 is the initial scene that specifies the layout of a physical puzzle.
Hence, it is the same for all trials.
• state st: state of the environment at timestep t is composed of observations

of all trials.
• action at: action at timestep t (at ∈ R3) specifies size and initial position

i.e., x, y coordinates, of the red ball which the agent adds.
• reward rt: reward at timestep t is 1 if the trial at timestep t solves the puzzle

otherwise it is −α. α is a small positive number which encourages the agent
to solve the puzzle with less number of trials.

Fig. 2. An illustration of how the Perceptor, i.e., the CNN shown in blue, and the
Imaginator, i.e., the LSTM shown in orange, work. Given observation of a trial (a set
of images), the Perceptor first encodes each image into a feature vector, which is then
fed into the Imaginator. The task of the Imaginator is to predict the next image. In
order to make high quality prediction, the Imaginator has to reason about the position
of the movable objects, e.g, the red ball, the green ball, the blue cup, whose motion
follows Newton’s law. Hence, the Imaginator has to be able to master Newton’s law.

3.3 Perceptor

The first component of the world model is the Perceptor. As shown in Figure 1,
the Perceptor is implemented as a CNN. It takes an image as input and encodes
it into a feature vector. It is trained in an unsupervised manner with the help of
an autoencoder.

3.4 Imaginator

The other component of the world model is the Imaginator. As shown in Figure
2, the Imaginator is implemented as a LSTM [4]. At each time step, it takes a

1 subscripts are abbreviated for simplicity



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#0001
ECCV

#0001

4 Sheng Liu

...

Fig. 3. An illustration of the agent. Given an initial scene of a puzzle, together with
observations obtained from past trials, the Perceptor encodes the initial scene into
a feature vector (the dark gray bar), and an LSTM encodes past observations into
another vector (the gray bar). The two vectors are concatenated and fed into a MLP
for action prediction.

feature vector as input; it updates its hidden state and predicts the next image..
It is trained in an unsupervised manner with the help of an autoencoder. In
order to make high quality prediction, the Imaginator has to reason about the
position of the movable objects, e.g, the red ball, the green ball, the blue cup,
whose motion follows Newton’s law. Hence, the Imaginator has to be able to
master Newton’s law. Note that as the next image is also part of the observation,
the Imaginator is also trained in an unsupervised manner.

3.5 Agent

With the help of the world model, the agent is rather simple. It is implemented
as a two-layer perceptron (shown in Figure 3).

4 Experiments

4.1 Implementation Details

Perceptor:
The Perceptor is implemented as a six-layer CNN. The numbers of output chan-
nels of the six convolutional layers are 32, 64, 64, 64, 64, 64. The kernel size of
convolutional layer is 3. Three pooling layers are applied after the second, the
forth and the sixth convolutional layers. The decoder of the autoencoder used
to train the Perceptor is implemented as a six-layer CNN as well. All of its six
layers are deconvolutional layers with 64 output channels. Their kernel size is 3.

Imaginator:
The Imaginator is implemented as a one-layer LSTM. It’s hidden state dimension
is set to 128.



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#0001
ECCV

#0001

Cracking PHYRE with a World Model 5

Agent:
The agent is implemented as a two-layer perceptron. The number of output
channels of the first layer is set to 128. That of the second layer is set to 3 (as
action a ∈ R3).

Training:
We train our agent using actor critic algorithm (A2C) [7]. The decay factor γ
is set to 0.95. We use ADAM optimizer [6] to optimize parameters of all the
components of our model. The learning rate is set to 1e− 4, weight decay is not
used.

4.2 Comparison with Baselines

We compare our method with two simple baselines on PHYRE in Table 1.
AUCESS and SP@10 are two evaluation metrics defined in [1]. The larger the
two metrics are, the better the algorithm is. Please refer to [1] for details re-
garding the two baselines and the two evaluation metrics. As can be seen, our
method outperforms the two baselines, especially MEM. The reason that our
method is not able to significantly outperforms RAND is that the two LSTMs
used in the Imaginator and the agent (for encoding past observations) is hard
to train in an RL setting.

Method AUCCESS SP@10

RAND [1] 13.7 7.7
MEM [1] 2.4 2.7

Ours 16.8 9.4

Table 1. Comparison with baselines on PHYRE benchmark. RAND and MEM are
two baseline methods proposed in [1]. AUCESS and SP@10 are two evaluation metrics
defined in [1]. The larger the two metrics are, the better the algorithm is. Please refer
to [1] for details regarding the two baselines and the two evaluation metrics.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#0001
ECCV

#0001

6 Sheng Liu

References

1. Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L., Girshick, R.: Phyre:
A new benchmark for physical reasoning. In: Advances in Neural Information Pro-
cessing Systems. pp. 5083–5094 (2019)

2. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In:
Advances in Neural Information Processing Systems. pp. 2450–2462 (2018)

3. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)
4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)
5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.

Journal of artificial intelligence research 4, 237–285 (1996)
6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
7. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,

D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International conference on machine learning. pp. 1928–1937 (2016)

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

9. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

10. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)


