

000 001 002 003 004 005 006 007 Cracking PHYRE with a World Model

008
009
010
011
012
013
014
015
016
017
018
019
Sheng Liu¹

020
021
022
023
024
025
026
027
028
029
030
031
University at Buffalo, SUNY

032
033
034
035
036
037
038
039
Abstract. The ability to reason about physics is crucial for intelligent
039
agents to interact with the environment. However, not much progress
040
has been made in endowing machines with such an ability [1]. We pre-
041
sume that the lack of progress is due to the lack of an explicit world
042
model. Inspired by the superior performance world model achieved on
043
various benchmarks in OpenAI Gym [2], we propose to explicitly model
044
the physical world with a novel world model, which is composed of a
045
Perceptor (P) and an Imaginator (I). The world model is capable of per-
046
ceiving environmental changes and predicting plausible evolution of the
047
environment based on its perceived information. To validate the effective-
048
ness of the proposed world model, we conduct experiments on PHYRE,
049
i.e., a benchmark for physical reasoning, the results show that the world
050
model is able to help an agent reason about physics.

051
052
053
054
Keywords: World model, Physical reasoning, Actor critic

055 056 057 058 059 060 1 Introduction

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
1 Humans, even children who have not taken a single physics course, are able to
099
reason about physics. However, intelligent agents struggle with physics, including
099
those equipped with state-of-the-art reinforcement learning (RL) algorithms,
099
e.g., REINFORCE [5], DQN [8], A3C [7], PPO [9]. The goal of this project is to
099
design a novel world model which is able to endow an agent with the ability to
099
master laws of physics and leverage the mastered laws to solve challenging tasks
099
in *unseen* environments.

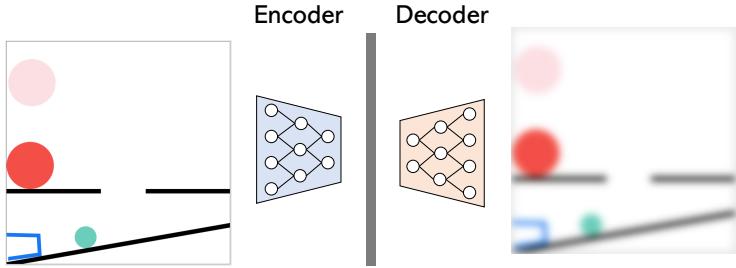
099
1 The world model we propose is composed of two components, *i.e.*, a Percep-
099
tor and an Imaginator. The Perceptor is responsible for processing the visual
099
information the agent observes and the Imaginator is responsible for hallucinat-
099
ing future observations of the environments based on the information that the
099
Perceptor provides. In order to generate high quality predictions, the Imaginator
099
has to understand Newton’s law of motion as objects in environments defined in
099
PHYRE move following Newton’s law of motion. With the help of world model,
099
we will train a rather simple agent using actor critic algorithm.

099 1 Related Work

099
1 Bakhtin *et al.* [1] proposed the task of PHYRE. As PHYRE is a rather new
099
topic, [1] is the only related work and the only baseline with which we could

045 compare. Specifically, Bakhtin *et al.* designed a novel benchmark composed of
 046 50 classical physical puzzles. An agent has to master laws of physics in order to
 047 solve the puzzles.

048 Ha *et al.* [3, 2] proposed the concept of world model and tested it in environments
 049 defined in OpenAI Gym. It improves sample efficiency of state-of-the-art
 050 RL algorithms [10].



051
 052
 053
 054 **Fig. 1.** An illustration of the autoencoder which is used to train the Perceptor. The
 055 autoencoder is composed of an encoder *i.e.*, the Perceptor and a decoder, both of
 056 which are convolutional neural networks (CNNs). The encoder encodes its input, *i.e.*,
 057 an image, into a feature vector, and the decoder decodes the feature vector into an
 058 image. The objective of the autoencoder is to reconstruct its input from the feature
 059 vector, thus allowing us to train it in an unsupervised manner.
 060

061 3 Methodology

062 Our goal is to design a novel world model which is able to reason about physics
 063 (at least Newtonian mechanics as the motion of objects in environments defined
 064 in PHYRE follows Newtonian mechanics). Ideally, an agent equipped with the
 065 world model should be able to solve the 2D physical puzzles from PHYRE in a
 066 sample efficient way.

067 3.1 Rules of PHYRE

068 PHYRE contains a set of physical puzzles. The agent is allowed to add a ball
 069 (a red ball) to the environment. The goal is to control the position and size of
 070 the red ball the agent adds to the environment to ensure that the blue object
 071 and the green object in the environment contact each other when a trial ends,
 072 *i.e.*, all the objects stop moving. The objects moves following Newton's law of
 073 motion. The objects in black is not movable.

074 3.2 Notations and Symbols

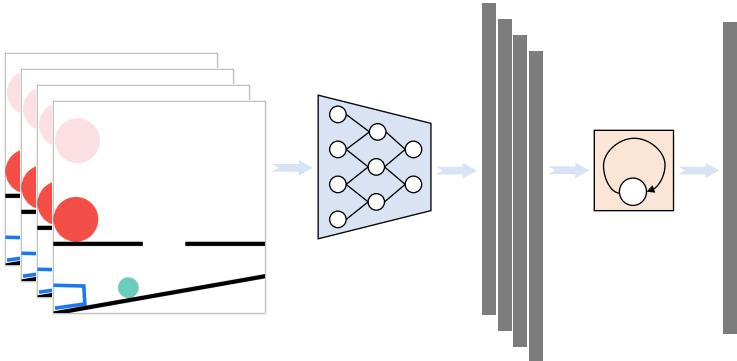
- 075 • observation o_t : observation at timestep t (o_t) is composed of $n + 1$ images
 076 whose resolution is 256×256 , *i.e.*, $o_t = \{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \mathbf{x} \in \mathbb{R}^{256 \times 256}$,

090 $\forall \mathbf{x} \in o_t^1$. \mathbf{x}_0 is the initial scene that specifies the layout of a physical puzzle.
 091 Hence, it is the same for all trials.

092 • state s_t : state of the environment at timestep t is composed of observations
 093 of all trials.

094 • action a_t : action at timestep t ($a_t \in \mathbb{R}^3$) specifies size and initial position
 095 i.e., x, y coordinates, of the red ball which the agent adds.

096 • reward r_t : reward at timestep t is 1 if the trial at timestep t solves the puzzle
 097 otherwise it is $-\alpha$. α is a small positive number which encourages the agent
 098 to solve the puzzle with less number of trials.



113 **Fig. 2.** An illustration of how the Perceptor, i.e., the CNN shown in blue, and the
 114 Imaginator, i.e., the LSTM shown in orange, work. Given observation of a trial (a set
 115 of images), the Perceptor first encodes each image into a feature vector, which is then
 116 fed into the Imaginator. The task of the Imaginator is to predict the *next* image. In
 117 order to make high quality prediction, the Imaginator has to reason about the position
 118 of the movable objects, e.g., the red ball, the green ball, the blue cup, whose motion
 119 follows Newton's law. Hence, the Imaginator has to be able to master Newton's law.

123 3.3 Perceptor

124 The first component of the world model is the Perceptor. As shown in Figure 1,
 125 the Perceptor is implemented as a CNN. It takes an image as input and encodes
 126 it into a feature vector. It is trained in an unsupervised manner with the help of
 127 an autoencoder.

130 3.4 Imaginator

131 The other component of the world model is the Imaginator. As shown in Figure
 132 2, the Imaginator is implemented as a LSTM [4]. At each time step, it takes a

133 ¹ subscripts are abbreviated for simplicity

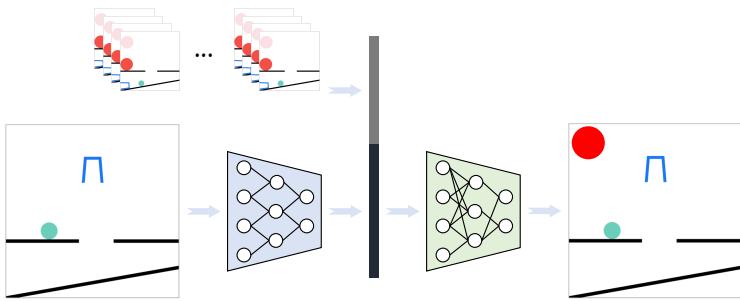


Fig. 3. An illustration of the agent. Given an initial scene of a puzzle, together with observations obtained from past trials, the Perceptor encodes the initial scene into a feature vector (the dark gray bar), and an LSTM encodes past observations into another vector (the gray bar). The two vectors are concatenated and fed into a MLP for action prediction.

feature vector as input; it updates its hidden state and predicts the *next* image.. It is trained in an unsupervised manner with the help of an autoencoder. In order to make high quality prediction, the Imaginator has to reason about the position of the movable objects, *e.g.* the red ball, the green ball, the blue cup, whose motion follows Newton’s law. Hence, the Imaginator has to be able to master Newton’s law. Note that as the *next* image is also part of the observation, the Imaginator is also trained in an unsupervised manner.

3.5 Agent

With the help of the world model, the agent is rather simple. It is implemented as a two-layer perceptron (shown in Figure 3).

4 Experiments

4.1 Implementation Details

Perceptor:

The Perceptor is implemented as a six-layer CNN. The numbers of output channels of the six convolutional layers are 32, 64, 64, 64, 64, 64. The kernel size of convolutional layer is 3. Three pooling layers are applied after the second, the forth and the sixth convolutional layers. The decoder of the autoencoder used to train the Perceptor is implemented as a six-layer CNN as well. All of its six layers are deconvolutional layers with 64 output channels. Their kernel size is 3.

Imaginator:

The Imaginator is implemented as a one-layer LSTM. It’s hidden state dimension is set to 128.

180 **Agent:**

181 The agent is implemented as a two-layer perceptron. The number of output
 182 channels of the first layer is set to 128. That of the second layer is set to 3 (as
 183 action $a \in \mathbb{R}^3$).

184 **Training:**

185 We train our agent using actor critic algorithm (A2C) [7]. The decay factor γ
 186 is set to 0.95. We use ADAM optimizer [6] to optimize parameters of all the
 187 components of our model. The learning rate is set to $1e-4$, weight decay is not
 188 used.

191 **4.2 Comparison with Baselines**

192 We compare our method with two simple baselines on PHYRE in Table 1.
 193 AUCESS and SP@10 are two evaluation metrics defined in [1]. The larger the
 194 two metrics are, the better the algorithm is. Please refer to [1] for details re-
 195 garding the two baselines and the two evaluation metrics. As can be seen, our
 196 method outperforms the two baselines, especially MEM. The reason that our
 197 method is not able to significantly outperforms RAND is that the two LSTMs
 198 used in the Imaginator and the agent (for encoding past observations) is hard
 199 to train in an RL setting.

Method	AUCESS	SP@10
RAND [1]	13.7	7.7
MEM [1]	2.4	2.7
Ours	16.8	9.4

201 **Table 1.** Comparison with baselines on PHYRE benchmark. RAND and MEM are
 202 two baseline methods proposed in [1]. AUCESS and SP@10 are two evaluation metrics
 203 defined in [1]. The larger the two metrics are, the better the algorithm is. Please refer
 204 to [1] for details regarding the two baselines and the two evaluation metrics.

References

1. Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L., Girshick, R.: Phyre: A new benchmark for physical reasoning. In: Advances in Neural Information Processing Systems. pp. 5083–5094 (2019)
2. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In: Advances in Neural Information Processing Systems. pp. 2450–2462 (2018)
3. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)
4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation **9**(8), 1735–1780 (1997)
5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research **4**, 237–285 (1996)
6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
7. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. pp. 1928–1937 (2016)
8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature **518**(7540), 529–533 (2015)
9. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)
10. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)