
DeepRacer Car

Motivation

The AWS Deepracer is a complex environment for reinforcement learning. I can learn how the agent training

with complex action space and reward function. It is also a good practice for learning autonomous vehicle.

The most important is that the model we get from training can apply to the physical agent. This closely

resembles a real-world use case.

For this project, we also need to process this system on local machine. This is a good way for us to get

familiar with Docker, Cuda, Gazebo, etc, if we did not use these things before. We can find different

repositories for the locally training. If you have time, try different repositories is also a chance to know how

they organize the applications and what they modified for the Deepracer.

3

Agent: RC car with camera

Action: Go forward, turn left,

turn right

Action Space

The course from Udacity provides

good instructions for the deepracer

car. It gives basic knowledges about

RL.

It also described the main contents

of the training steps and details

about the hyperparameters and

reward function.

Envrionment

8

In reinforcement learning for
AWS DeepRacer, an agent
(vehicle) learns from an
environment (a track) by
interacting with it and receiving
rewards for performing specific
actions.

9

We can choose different tracks as

the environment.

The state is the position that the car

on the track, and the image from

There is a center lane on the track

to help locate the car.

There are two conditions can be

considered as finish. One is

complete the track and the other

one is drive out of the track.

First Try before
Checkpoint

11

This is the default reward

function that helps agent to

learn. It use the center line as

the reference. The nearer to

the center line the more

rewards it will get.

We can modify it to gain

better performance.

12

The default algorithm in DeepRacer is Proximal Policy Optimization algorithm.
PPO uses two neural networks during training: a policy network and a value network. The policy network
(also called actor network) decides which action to take given an image as input. The value network (also
called critic network) estimates the cumulative reward we are likely to get given the image as input. Only
the policy network interacts with the simulator and gets deployed to the real agent, namely an AWS
DeepRacer vehicle.

13

● Gradient descent batch size: The number recent vehicle experiences sampled at random from
an experience buffer and used for updating the underlying deep-learning neural network
weights.

● Number of epochs: The number of passes through the training data to update the neural
network weights during gradient descent.

● Learning rate: During each update, a portion of the new weight can be from the gradient-
descent (or ascent) contribution and the rest from the existing weight value.

● Entropy:A degree of uncertainty used to determine when to add randomness to the policy
distribution.

● Discount factor: A factor specifies how much of the future rewards contribute to the expected
reward.

● Loss type: Type of the objective function used to update the network weights.
● Number of experience episodes between each policy-updating iteration: The size of the

experience buffer used to draw training data from for learning policy network weights.

Hyperparameters of PPO

14

Here is the result from the training using default rewards

function and PPO algorithm. The result is pretty good and

I even did not finish the training with some issues on the

AWS. I setted training time to 1 hour and the training just

ran for around half an hour, then it stopped and return

error. The guide said I can still evaluate my result. So I got

the above evaluation. Two run completed and one failed,

not bad.

Install on Local

Repository From ARCC

• The recommended OS is Ubuntu 18.04, but

I use 16.04 and it works

• Nvidia GPU needed

• CUDA and CUDNN

• Docker Docker compose and Nvidia-Docker

• AWS-cli(used for interaction with AWS)

• vncviewer(simulation visualization)

https://github.com/ARCC-RACE/deepracer-for-

dummies.git

Git clone the repository from above link.

Then go into the folder and run the script init.sh for

initialization.

Setup aws-cli(https://www.youtube.com/watch?v=FOK5BPy30HQ)

https://www.youtube.com/watch?v=FOK5BPy30HQ

Edit the reward function in the deepracer-for-dummies/docker/volumes/minio/bucket/custom_files/reward.py file.

Change the track in `deepracer-for-dummies/docker/.env`.

Adjust the hyperparameters list in the

deepracer-for-

dummies/docker/volumes/minio/buck

et/custom_files/model_metadata.json

file.

Make sure to update the action

indices as you add more actions.

Adjust the hyperparameters in the

deepracer-for-

dummies/rl_deepracer_coach_robo

maker.py file.

After edit the previously

files, we can start

training by run the script

start.sh. Run stop.sh to

stop the training and

delete-last-run.sh to

clean the space before

next run.

Local training using vncviewer for

visualization

The track in the image is

China_track map

Change reward
function

Default reward function which is

focus on follow the center line to

get more rewards.

I only use the all_wheels_ on_ track

parameter to define the rewards. The rule is

giving reward if there is no wheels go off the

track.

This is based on the follow the center line function,

and it add formula to penalize reward if the agent

is steering too much.

This is based on the follow the center line function,

and it add formula to give more reward if the agent

using high speed to drive.

I use the parameter speed to increase the reward

for every step.

This reward function is different from the

previously reward functions. I use the waypoints

as the reference to give rewards.

I firstly draw a shortest path on the track map, then

I define where the agent locate to the center line,

and use closest waypoints as reference.

Variable Name Type

all_wheels_on_track Boolean

distance_from_center Float

is_left_of_center Boolean

speed Float

steering_angle Float

track_width Float

closest_waypoints Integer

progress Float

This is based on the waypoints following function.

I add formula to give higher reward if the speed is

fast and using less steps to finish the lap.

Thank you

