Non-linear Value Function Approximation:
Dueling DQN, PER, Rainbow DQN

Alina Vereshchaka

CSE4/510 Reinforcement Learning
Spring 2020

avereshc@buffalo.edu

March 30, 2020
Overview

1 Recap: DQN & Double DQN

2 Dueling DQN

3 Prioritized Experience Replay (PER)

4 Rainbow DQN (DeepMind, 2017)
Recap: Deep Q-Networks (DQN)

- Represent value function by deep Q-network with weights w
 \[Q(s, a, w) \approx Q^\pi(s, a) \]

- Define objective function
 \[
 \mathcal{L}(w) = \mathbb{E} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^2 \right]
 \]

- Leading to the following Q-learning gradient
 \[
 \frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right) \frac{\partial Q(s, a, w)}{\partial w} \right]
 \]

- Optimize objective end-to-end by SGD, using $\frac{\partial \mathcal{L}(w)}{\partial w}$
DQN provides a stable solution to deep value-based RL

1. Use experience replay
2. Freeze target Q-network
3. Clip rewards or normalize network adaptive to sensible range
Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N
Initiate action-value function Q with random weights θ
Initiate target action-value function Q' with weights $\theta^- = \theta$

For episode $= 1, M$

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For $t = 1, T$

With probability ε select a random action a_t
otherwise select $a_t = \text{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}
Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases}
 r_j & \text{if episode terminates at step } j + 1 \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta^-) & \text{otherwise}
\end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ
Every C steps reset $\hat{Q} = Q$

End For

End For
Double Deep Q Network

Two estimators:

- Estimator Q_1: Obtain best actions
- Estimator Q_2: Evaluate Q for the above action
Algorithm 1: Double Q-learning (Hasselt et al., 2015)

Initialize primary network Q_θ, target network $Q_{\theta'}$, replay buffer \mathcal{D}, $\tau << 1$

for each iteration do

for each environment step do

Observe state s_t and select $a_t \sim \pi(a_t, s_t)$

Execute a_t and observe next state s_{t+1} and reward $r_t = R(s_t, a_t)$

Store (s_t, a_t, r_t, s_{t+1}) in replay buffer \mathcal{D}

for each update step do

sample $e_t = (s_t, a_t, r_t, s_{t+1}) \sim \mathcal{D}$

Compute target Q value:

$$Q^*(s_t, a_t) \approx r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a')$$

Perform gradient descent step on $(Q^*(s_t, a_t) - Q_\theta(s_t, a_t))^2$

Update target network parameters:

$$\theta' \leftarrow \tau \ast \theta + (1 - \tau) \ast \theta'$$
Double Q-learning can be used at scale to successfully reduce this overoptimism, resulting in more stable and reliable learning.

Double DQN uses the existing architecture and deep neural network of the DQN algorithm without requiring additional networks or parameters.
<table>
<thead>
<tr>
<th></th>
<th>Recap: DQN & Double DQN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Dueling DQN</td>
</tr>
<tr>
<td>3</td>
<td>Prioritized Experience Replay (PER)</td>
</tr>
<tr>
<td>4</td>
<td>Rainbow DQN(DeepMind, 2017)</td>
</tr>
</tbody>
</table>
Dueling DQN

What is Q-values tells us?
What is Q-values tells us?
How good it is to be at state s and taking an action a at that state $Q(s, a)$.
Advantage Function $A(s, a)$

$$A(s, a) = Q(s, a) - V(s)$$

- If $A(s, a) > 0$: our gradient is pushed in that direction
- If $A(s, a) < 0$ (our action does worse than the average value of that state) our gradient is pushed in the opposite direction
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) =$$

In Dueling DQN, we separate the estimator of these two elements, using two new streams: one estimates the state value $V^\pi(s)$, one estimates the advantage for each action $A(s, a)$.
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)$$

$$V^\pi(s) =$$
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)$$

$$V^\pi(s) = E_{a \sim \pi(s)}[Q^\pi(s, a)]$$
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)$$

$$V^\pi(s) = E_{a \sim \pi(s)}[Q^\pi(s, a)]$$

In Dueling DQN, we separate the estimator of these two elements, using two new streams:

- one estimates the state value $V(s)$
- one estimates the advantage for each action $A(s, a)$

Networks that separately computes the advantage and value functions, and combines back into a single Q-function at the final layer.
Dueling DQN
Dueling DQN

- One stream of fully-connected layers output a scalar $V(s; \theta, \beta)$
- Other stream output an $|A|$-dimensional vector $A(s, a; \theta, \alpha)$

Here, θ denotes the parameters of the convolutional layers, while α and β are the parameters of the two streams of fully-connected layers.

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha)$$
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable \rightarrow given Q we cannot recover V and A uniquely \rightarrow poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha) \right)
\]
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha)) \]

\[a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta) \]
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable \(\rightarrow \) given \(Q \) we cannot recover \(V \) and \(A \) uniquely \(\rightarrow \) poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha))
\]

\[
a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta)
\]

\[
= \arg \max_{a' \in A} A(s, a'; \theta, \alpha)
\]
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable \(\rightarrow \) given \(Q \) we cannot recover \(V \) and \(A \) uniquely \(\rightarrow \) poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha) \right) \]

\[a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta) \]

\[= \arg \max_{a' \in A} A(s, a'; \theta, \alpha) \]

\[Q(s, a^*; \theta, \alpha, \beta) = V(s; \theta, \beta) \]
\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Replaces the max operator with an average

 \[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha)) \]

 It increases the stability of the optimization: the advantages only need to change as fast as the mean, instead of having to compensate any change.
Dueling DQN: Example

Value and advantage saliency maps for two different time steps

- **Leftmost pair** - the value network stream pays attention to the road and the score. The advantage stream does not pay much attention to the visual input because its action choice is practically irrelevant when there are no cars in front.
- **Rightmost pair** - the advantage stream pays attention as there is a car immediately in front, making its choice of action very relevant.
Dueling DQN: Summary

- Intuitively, the dueling architecture can learn which states are (or are not) valuable, without having to learn the effect of each action for each state.

- The dueling architecture represents both the value $V(s)$ and advantage $A(s, a)$ functions with a single deep model whose output combines the two to produce a state-action value $Q(s, a)$.
Table of Contents

1 Recap: DQN & Double DQN

2 Dueling DQN

3 Prioritized Experience Replay (PER)

4 Rainbow DQN (DeepMind, 2017)
Recap: Experience replay

Problem: Online RL agents incrementally update their parameters while they observe a stream of experience. In their simplest form, they discard incoming data immediately, after a single update. Two issues are

1. Strongly correlated updates that break the i.i.d. assumption
2. Rapid forgetting of possibly rare experiences that would be useful later on.
Recap: Experience replay

Problem: Online RL agents incrementally update their parameters while they observe a stream of experience. In their simplest form, they discard incoming data immediately, after a single update. Two issues are

1. Strongly correlated updates that break the i.i.d. assumption
2. Rapid forgetting of possibly rare experiences that would be useful later on.

Solution: Experience replay

- Break the temporal correlations by mixing more and less recent experience for the updates
- Rare experience will be used for more than just a single update
Prioritized Experience Replay (PER)

Two design choices:

1. Which experiences to store?
2. Which experiences to replay?
Prioritized Experience Replay (PER)

Two design choices:

1. Which experiences to store?
2. Which experiences to replay? PER tries to solve this
PER: Example ‘Blind Cliffwalk’

- Two actions: ‘right’ and ‘wrong’
- The episode is terminated when ‘wrong’ action is chosen.
- Taking the ‘right’ action progresses through a sequence of \(n \) states, at the end of which lies a final reward of 1; reward is 0 elsewhere.
Prioritized Experience Replay (PER): TD error

TD error for vanilla DQN:

\[\delta_i = r_t + \gamma \max_{a \in A} Q_\theta(s_{t+1}, a) - Q_\theta(s_t, a_t) \]

TD error for Double DQN:

\[\delta_i = r_t + \gamma Q_\theta(s_{t+1}, \text{argmax}_{a \in A} Q_\theta(s_{t+1}, a)) - Q_\theta(s_t, a_t) \]

we use \(|\delta_i|\) as the magnitude of the TD error.

What \(|\delta_i|\) shows us?
Prioritized Experience Replay (PER): TD error

TD error for vanilla DQN:

$$\delta_i = r_t + \gamma \max_{a \in A} Q_\theta(s_{t+1}, a) - Q_\theta(s_t, a_t)$$

TD error for Double DQN:

$$\delta_i = r_t + \gamma Q_\theta(s_{t+1}, \text{argmax}_{a \in A} Q_\theta(s_{t+1}, a)) - Q_\theta(s_t, a_t)$$

we use $|\delta_i|$ as the magnitude of the TD error.

What $|\delta_i|$ shows us?

A big difference between our prediction and the TD target → we have to learn a lot
Two ways of getting priorities, denoted as p_i:

1. Direct, proportional prioritization:

$$p_i = |\delta_i| + \epsilon$$

where ϵ is a small constant ensuring that the sample has some non-zero probability of being drawn.
Prioritized Experience Replay (PER)

Two ways of getting priorities, denoted as p_i:

1. Direct, proportional prioritization:

 $$p_i = |\delta_i| + \epsilon$$

 where ϵ is a small constant ensuring that the sample has some non-zero probability of being drawn

2. A rank based method:

 $$p_i = \frac{1}{\text{rank}(i)}$$

 where $\text{rank}(i)$ is the rank of transition i when the replay memory is sorted according to $|\delta_i|$
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling. Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
- If $\alpha \to 1$, then we get to full prioritization, where sampling data points is more heavily dependent on the actual $|\delta_i|$ values.
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$
P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}
$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
- If $\alpha \to 1$, then we get to full prioritization, where sampling data points is more heavily dependent on the actual $|\delta_i|$ values.

This will ensure that the probability of being sampled is monotonic in a transition’s priority, while guaranteeing a non-zero probability even for the lowest-priority transition.
Use importance sampling weights to adjust the updating by reducing the weights of the often seen samples.

\[w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)} \right)^{\beta} \]

\(\beta \) is the exponent, which controls how much prioritization to apply.

For stability reasons, we always normalize weights by \(1/\max_i w_i \) so that they only scale the update downwards.
Algorithm 1 Double DQN with proportional prioritization

1: **Input:** minibatch k, step-size η, replay period K and size N, exponents α and β, budget T.
2: Initialize replay memory $\mathcal{H} = \emptyset$, $\Delta = 0$, $p_1 = 1$
3: Observe S_0 and choose $A_0 \sim \pi_\theta(S_0)$
4: for $t = 1$ to T do
5: Observe S_t, R_t, γ_t
6: Store transition $(S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t)$ in \mathcal{H} with maximal priority $p_t = \max_i < t p_i$
7: if $t \equiv 0 \mod K$ then
8: for $j = 1$ to k do
9: Sample transition $j \sim P(j) = p_j^\alpha / \sum_i p_i^\alpha$
10: Compute importance-sampling weight $w_j = (N \cdot P(j))^{-\beta} / \max_i w_i$
11: Compute TD-error $\delta_j = \hat{R}_j + \gamma_j Q_{\text{target}}(S_j, \arg \max_a Q(S_j, a)) - Q(S_{j-1}, A_{j-1})$
12: Update transition priority $p_j \leftarrow |\delta_j|$
13: Accumulate weight-change $\Delta \leftarrow \Delta + w_j \cdot \delta_j \cdot \nabla_\theta Q(S_{j-1}, A_{j-1})$
14: end for
15: Update weights $\theta \leftarrow \theta + \eta \cdot \Delta$, reset $\Delta = 0$
16: From time to time copy weights into target network $\theta_{\text{target}} \leftarrow \theta$
17: end if
18: Choose action $A_t \sim \pi_\theta(S_t)$
19: end for
Prioritized Experience Replay (PER): Summary

- Built on top of experience replay buffers
Prioritized Experience Replay (PER): Summary

- Built on top of experience replay buffers
- Uniform sampling from a replay buffer is a good default strategy, but it can be improved by prioritized sampling, that will weigh the samples so that “important” ones are drawn more frequently for training.

Key idea is to increase the replay probability of experience tuples that have a high expected learning progress (measured by $|\delta|$). This leads to both faster learning and better final policy quality, as compared to uniform experience replay.
Prioritized Experience Replay (PER): Summary

- Built on top of experience replay buffers

- Uniform sampling from a replay buffer is a good default strategy, but it can be improved by prioritized sampling, that will weigh the samples so that “important” ones are drawn more frequently for training.

- Key idea is to increase the replay probability of experience tuples that have a high expected learning progress (measured by $|\delta|\)). This lead to both faster learning and to better final policy quality, as compared to uniform experience replay.
Table of Contents

1 Recap: DQN & Double DQN
2 Dueling DQN
3 Prioritized Experience Replay (PER)
4 Rainbow DQN (DeepMind, 2017)
Rainbow: Why not to combine all these improvements in one?
Rainbow DQN

Improvements so far:

- **Double DQN** (DDQN; van Hasselt, Guez, and Silver 2016) addresses an overestimation bias of Q-learning.

$$\left(R_{t+1} + \gamma_{t+1} q_\theta(S_{t+1}, \text{argmax}_{a'} q_\theta(S_{t+1}, a')) - q_\theta(S_t, A_t) \right)^2$$

- **Prioritized experience replay** (Schaul et al. 2015) improves data efficiency, by replaying more often transitions from which there is more to learn.

$$p_t \propto \left| R_{t+1} + \gamma_{t+1} \max_{a'} q_\theta(S_{t+1}, a') - q_\theta(S_t, A_t) \right|^\omega$$
Rainbow DQN

- **The dueling network architecture** (Wang et al. 2016) helps to generalize across actions by separately representing state values and action advantages.

\[
q_\theta(s, a) = v_\eta(f_\xi(s)) + a_\psi(f_\xi(s), a) - \frac{\sum_{a'} a_\psi(f_\xi(s), a')}{N_{\text{actions}}}
\]

- Learning from **multi-step bootstrap targets** (Sutton 1988; Sutton and Barto 1998), shifts the bias-variance tradeoff and helps to propagate newly observed rewards faster to earlier visited states.

\[
R_t^{(n)} \equiv \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1}
\]

- **Noisy DQN** (Fortunato et al. 2017) uses stochastic network layers for exploration.

- **Distributional Q-learning** (Bellemare, Dabney, and Munos 2017) learns a categorical distribution of discounted returns.
Integrate all the aforementioned components into a single agent - **Rainbow DQN**