Lab2 — Design and Implementation of a Device Driver
CSE524: Realtime Operating Systems 2013

1. Objectives and overview of the project:

In this lab we will add a device driver to the XINU kernel. Objectives of the lab are to:

(i) study the software representing various components of the Embedded XINU operating system

(ii) learn and understand the requirements for writing a device driver, and

(iii) add a simple device driver to enhance the capabilities of the Embedded XINU.

We will develop the lab in incremental steps (i) shell programming (ii) frame buffer proof of concepts as a shell
program and (iii) actual frame buffer device driver.

2. Project Environment:

2.1 Operating system XINU: XINU ("Xinu Is Not Unix") is a small, academic operating system developed at
Purdue University by Dr. Douglas E. Comer in the early 1980s for the LSI-11 platform; it has now been ported to
a variety of platforms. Embedded XINU is an update of this project which attempts to modernize the code base
(to ANSI-compliant C) and port the system to a modern architecture (specifically the MIPS architecture).

2.2 Hardware WRT54GL: We will use wireless router WRT54GL as a host for embedded the software we will
develop for enhancing the features of an embedded operating system. The WRT54G is notable for being the first
consumer-level network device that had its firmware source code released to satisfy the obligations of the GNU
GPL. This allows programmers to modify the firmware to change or add functionality to the device. WRT54GL
features a Broadcom MIPS processor BCM5352 (200-250Mhz), a four port switch, 802.11b and 802.11g wireless
LAN support, a Web interface for configuration of the router, 16Mbytes of RAM and 4Mbytes of flash memory.
Any modification to the router function itself has to be done by updating the firmware on the flash memory.
However we will use the RAM to load the embedded XINU.

2.3 Test Environment: The lab environment will be supported by other hardware and software components to
provide cross-compiling and networking support. In order to compile Embedded MIPS kernels on a workstation
that is not itself a MIPS processor, it is necessary to build and install an appropriate cross compiler. Any time you
modify the embedded XINU, the recompiled software will have to be reloaded. A simple network configuration
allocating IP address to the host with the cross-compiler, the wireless router that will host the embedded XINU
and a common router that forms the network are shown in Figure 1.

IP: 192.168.0.101 IP: 192.168.0.130

Figure 1: Network to enable uploading Embedded XINU into WRT54GL (by D. You)



The Common Firmware Environment (CFE) is the firmware developed by Broadcom for the BCM947xx SoC
platform (among others). It is the first code that runs when the router boots and performs functions:

Initializes the system

Sets up a basic environment in which code can run

Optionally provides a command line interface non-standard usage
Loads and executes a kernel image

So, in normal operation, a user will not see CFE working at all; it will load the LinkSys kernel and exits. For us,
however, CFE is crucial, because it provides us with the ability to load an image over the network using TFTP.

3. Device drivers

A device driver is a software module that abstracts a physical (hardware) or virtual devices and provides
a uniform (and sometimes standard) interface for an operating system to access the peripherals of a
system. A framebuffer is a video output device that drives a video display from a memory buffer
containing a complete frame of data. The information in the buffer typically consists of color values for
every pixel (point that can be displayed) on the screen. Color values are commonly stored in 1-bit
monochrome, 4-bit palettized, 8-bit palettized, 16-bit highcolor and 24-bit truecolor formats.
[http://en.wikipedia.org/wiki/Framebuffer]. We will simulate the monochrome framebuffer and single
pixel represented by an asterisk “*’ character. Assume a suitable size for the buffer (say, 256characters
X 256 characters). Consider for example a display window (16 X16), try to draw your initials using
asterisk or any other character.

*
* *

* *
* *
* *
* *

* * * * *

*
*
*
*
*
*
*
*
*



http://en.wikipedia.org/wiki/Video_frame
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Monochrome
http://en.wikipedia.org/wiki/Palette_(computing)
http://en.wikipedia.org/wiki/Highcolor
http://en.wikipedia.org/wiki/Truecolor

3. What to do?

You will implement the project in three phases:

Phase 1: Understand shell programming and develop the code for as simple shell command as described
below. Write a simple shell command “Eval Exp” to evaluate a three operand-two operator expression
(apply operator precendence). (25%)

o eval exp
e that evaluates the expression exp and prints the result: for example
Example 1

e evald+ 5*3

19
Example 2
o eval9-7/2
6

Phase 2: Design and implement a simple user level framebuffer as shell command in order understand
the function of a framebuffer. (25%)

Phase 3: Design and implement a framebuffer device driver that will enhance the xinu operating system
with a device driver similar to tty driver. (50%)

3.1 Study Embedded XINU files

Embedded XINU documentation for the version of XINU we are using is available at
http://www.cse.buffalo.edu/~bina/amrita/RTOS/xinudocs/index.html . This documentation is internally well
linked to allow navigation among related code files. Examine the directory structure and understand the purpose
of various directories. Specifically, study these files in the directories:

e include (header files): shell.h, device.h , interrupt.h, tty.h, uart.h

o shell (shell command files): shell.c, xsh_led.c, xsh_help.c

e system (system operations): devtable.c, getc.c, putc.c, read.c, write.c, initialize.c, kprintf.c, open.c,
close.c, startup.S

o all the files in tty and uart directories.

3.2 Write a framebuffer driver as a shell command (Phase 1)

See http://xinu.mscs.mu.edu/Shell on how to add to the shell commands.

3.3 Write a real Framebuffer driver

The framebuffer is a graphic hardware-independent abstraction layer to show graphics on a console without
relying on system-specific libraries or the heavy overhead of a Window display system. The framebuffer driver
will be implemented as a virtual device on top of uart device driver. The tty driver is indeed a virtual driver that
is implemented on top of uart driver. Study tty driver to get an idea of the approach. For the framebuffer device
driver suggested steps are as follows:

1. Update device.h and devtable.c to include a framebuffer driver.

2. Create a framebuf.h that specifies the operations of the framebuffer: init, control, open, close, write (or
putChar), other functions needed.

3. Create a directory framebuf and implement all the functions.

4. Update Makefile in the compile directory to include instructions to compile and link framebuf driver to the

3


http://www.cse.buffalo.edu/~bina/amrita/RTOS/xinudocs/index.html
http://xinu.mscs.mu.edu/Shell

Xinu boot.
5. Update other files such as the initialize.c, if needed.
6. Load the xinu boot and test the operation of the framebuffer driver.

Test it using a shell command that will use this driver. In other words, you ask the shell command to “write” to
the screen via the framebuffer.

What to submit?

Zip the Phase files as phasel.zip

Zip the phase 2 files as FBPhase2.zip

Zip the phase 3 files (xinu) as FSPhase3.zip

Transfer files from nexos to timberlake and then submit from timberlake. One submission per group.
submit_cse524b the zip files separated by space



