
Implementing AUTOSAR Scheduling and Resource Management on an
Embedded SMT Processor

Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer
Department of Compute Science

University of Augsburg
86159 Augsburg, Germany

{kluge, mische, uhrig, ungerer}@informatik.uni-augsburg.de

Abstract

The AUTOSAR specification provides a common stan-
dard for software development in the automotive domain.
Its functional definition is based on the concept of single-
threaded processors. Recent trends in embedded proces-
sors provide new possibilities for more powerful proces-
sors using parallel execution techniques like multithread-
ing and multi-cores. We discuss the implementation of the
AUTOSAR operating system interface on a modern simul-
taneous multithreaded (SMT) processor. Several problems
in resource management arise when AUTOSAR tasks are
executed concurrently on a multithreaded processor. Espe-
cially deadlocks, which should be averted through the pri-
ority ceiling protocol, can reoccur. We solve this problems
by extending AUTOSAR OS by the Task Filtering Method
to avoid deadlocks in multithreaded processors. Other syn-
chronisation problems arising through the parallel execu-
tion of tasks are solved through the use of lock-free data
structures. In the end, we propose some extensions to the
AUTOSAR specification so it can be used in software devel-
opment for SMT processors. We develop some additional
requirements on such SMT processors to enable the use of
the Task Filtering Method. Our work gives also perspec-
tives for software development on upcoming multi-core pro-
cessors in the automotive domain.

1. Introduction

Like in other domains, current trends in embedded sys-
tems target new hardware architectures, like simultaneous
multi-threading (SMT) or multi-core processors. These pro-
cessors utilise task-level parallelism. In comparison, hith-
erto single-threaded processors just allowed a quasi-parallel
execution of applications by time-slicing the available pro-
cessing time.

In the automotive domain, OSEK [17] and its succes-
sor AUTOSAR [2] define common interfaces for software
development. The design of these standards is geared to-
wards single-threaded hardware platforms. The use of such
traditional programming models on upcoming hardware ar-
chitecture inevitably leads to problems. The interfaces and
programming models need to be enhanced in concert with
the advancement of the hardware architectures.

Particular attention has to be paid to the fact that many
embedded systems operate under hard real-time conditions.
This implies some restrictions for operating system and ap-
plication development. The software must be designed in a
way that timing guarantees can be given, i.e. a worst case
execution time (WCET) analysis must be possible. Parallel
execution of tasks requires specific scheduling and resource
management techniques to preserve WCET analysability of
the tasks and to avoid blocking of higher priority tasks by
lower priority tasks.

In this paper, we address the problems that arise when
applying the concepts of current automotive software stan-
dards to upcoming processor architectures. Especially we
investigate the problems of synchronisation and resource
management in an SMT processor under real-time require-
ments. We introduce task filtering as a solution for the re-
source management problem in multithreaded processors.
With our solution we are able the preserve the behaviour
of AUTOSAR high priority tasks on an SMT processor and
simultaneously gain some advantage through earlier execu-
tion of lower priority tasks.

The appearance of multi-core architectures in the auto-
motive domain will pose similar problems for software de-
velopers. Applications will also be executed utilising a task-
level parallelism on such processors. So our results can be
conferred on these architectures as well.

In section 2 we give a description of AUTOSAR OS and
the hardware architecture we are dealing with. Section 3
presents the mapping of the AUTOSAR OS scheduler to



an SMT processor and shows which problems arise in such
an environment. In section 4 we present related work, fol-
lowed by our own solution in section 5. In Section 6 we
discuss our solution in more detail. Some evaluation results
are presented in section 7. Section 8 concludes this paper.

2. Basics

2.1. AUTOSAR Scheduling and Resource Manage-
ment

The AUTOSAR operating system [3] is mostly based on
OSEK OS [18]. It provides common concepts like tasks, in-
terrupts and resource management. These are manipulated
using system services as an interface between the high-level
application and the operating system.

In the following we describe the parts of these standards
as far as they are relevant for our work. Naturally, the stan-
dards themselves are much more comprehensive.

2.1.1. Task Scheduling

The OS scheduler manages tasks as basic units. A task acts
as a container for specific functionalities of an application.
An application can be subdivided into several tasks. OSEK
OS distinguishes two types of tasks. Basic Tasks can enter
the states suspended, ready and running. Extended Tasks
additionally have a waiting state. Furthermore, tasks can
be defined as preemptive or non-preemptive. Once running,
the latter can only be rescheduled in a very restricted set of
cases.

OSEK OS defines an event-driven priority schedul-
ing. Tasks are assigned static priorities, which cannot be
changed by the user at runtime. Only in the particular case
of resource accesses (see OSEK Priority Ceiling Protocol in
2.1.2) the operating system can temporarily assign a higher
priority to a task.

Ready tasks are grouped by their priority in FIFO queues
with the oldest task (the one activated first) at the front of
each queue (see fig. 1). If rescheduling takes place, the
scheduler regards all ready and running tasks. The oldest
task with the highest priority is scheduled next. Thereby,
the currently running task is treated as if it was at the front
of its priority’s FIFO queue. If a task has been preempted
by a previous rescheduling, it is treated as the oldest task in
the FIFO queue of its priority. A task that has left its waiting
state is treated as the newest task of its priority and thus is
put at the end of the ready queue.

Basic tasks have synchronisation points at their begin-
ning and end. Extended tasks comprise additional synchro-
nisation points when they are waiting for an event.

Rescheduling of a non-preemptive task can only take
place if the task terminates itself successfully, explicitly

Figure 1. Scheduling model of AUTOSAR: The
scheduler picks (arrow) the oldest and high-
est priority task for execution

calls the schedule system service, or waits for an event.
Preemptive tasks additionally can be rescheduled through a
task activation, by setting an event for another task, on re-
leasing a resource, and on return from interrupt level to the
task level.

2.1.2. Resource Management

The OSEK resource management coordinates the tasks’ ac-
cess to resources. Its main objectives are as follows:

1. two tasks cannot hold the same resource concurrently
(mutual exclusion),

2. priority inversions and

3. deadlocks do not occur,

4. a resource access will never put a task into the waiting
state.

To provide these properties, OSEK OS requires the imple-
mentation of the OSEK Priority Ceiling Protocol (OSEK
PCP). It is based on the Priority Ceiling Protocol introduced
by Sha et al. [21]. Thus, a predictable timing behaviour can
be guaranteed at least for the highest priority task.

Each resource R is statically assigned a so-called ceiling
priority CPR. This ceiling priority is at least as high as the
highest priority of any task accessing R. Simultaneously, it
must be lower than the lowest priority of tasks that do not
access the resource, but have a higher priority than the high-
est priority task accessing the resource. Each time a task is
accessing a resource and its current priority is lower than
the resource’s ceiling priority, the task’s priority is raised to
the ceiling priority of this resource. Vice versa, if the task
releases the resource, its previous priority is restored [18].

2



Thus, the OSEK PCP ensures that the attempt to get a re-
source will never result in blocking a task. This is because
the task holding a resource will run at the ceiling priority
and thus be executed before any other task that might ac-
cess this resource. Deadlocks and priority inversion are an-
ticipated efficiently by this approach (see fig. 3(a)). Mutual
exclusion for accesses to a specific resource is also ensured
by the OSEK PCP, as the task holding a resource cannot be
preempted by any other task that might access this resource.

The task scheduler is treated as a special resource in
OSEK. It can be accessed by all tasks in a system. Follow-
ing the OSEK PCP definition, its ceiling priority thus will
be the highest priority available in the system. Hence, if a
task performs a rescheduling it will always run at highest
priority.

AUTOSAR extends the OSEK scheduling interface by
the definition of schedule tables, among others. These en-
capsulate a set of expiry points at which specific actions will
be executed. The expiry points and the associated actions
are statically configured.

2.2. SMT Processor Model

Simultaneous Multithreading (SMT) was introduced by
Tullsen et al. [22, 6]. The basic idea of SMT is to issue
instructions of different threads within one issue cycle into
a superscalar pipeline (fig. 2). Thereby, a higher utilisation
of the pipeline is achieved, as well as a higher throughput
of multithreaded applications. In figure 2 we compare an
SMT processor to a 2-way superscalar dual core processor.
As can be seen, the SMT processor can reach a higher util-
isation in the highest priority thread. Remaining issue slots
can be used for other threads as well.

Figure 2. Instruction issue in an SMT and
in a dual-core processor; the lower priority
threads can issue instructions arbitrarily or
due to their priority

For this work, we use an SMT architecture with the fol-
lowing properties: The processor is able to issue in each

cycle up to i instructions from up to t threads (thread slots),
i.e. an i-way t-threaded processor. Instructions are is-
sued in-order. The thread slots are served due to priori-
ties set by the operating system. If, due to dependencies
or latencies, less than i instructions can be issued from the
highest-priority thread, the issue stage tries to select fur-
ther instructions from the next prior threads. Thus, time-
predictability can be guaranteed for one hard real-time ap-
plications. WCET analysability of the application is pre-
served. The processor architecture must guarantee that the
highest priority thread is never blocked by a lower priority
thread.

3. Mapping AUTOSAR Scheduling onto an
SMT Processor

3.1. Algorithmic Extension

The aim of this work is to preserve the real-time be-
haviour of the highest priority tasks in AUTOSAR OS. As
an additional benefit we allow for an earlier execution of
lower priority tasks as far as possible. For these tasks, like
in AUTOSAR, no timing guarantees can be given.

The static priorities assigned to AUTOSAR tasks can
easily be mapped onto the thread slot priorities of an SMT
processor. If the processor provides less thread slots than
tasks are in the running or ready state, the AUTOSAR sys-
tem services related to task scheduling have to take care of
filling the thread slots correctly. Therefore, scheduling for
each slot is done separately. The scheduler selects the oldest
and highest prior task as described in section 2.1.1, loads it
into the thread slot and sets the slot’s priority to the tasks
priority. Thus, the highest priority task will always be exe-
cuted preferentially.

This approach can lead to the execution of tasks of a spe-
cific priority although one or more tasks of a higher priority
are still running. However, this will not change the system
behaviour in any harmful way. There should not be any
unmet dependencies between these tasks, if they are in the
ready state at the same time. If one task depends on some
results of another task, it must be activated by this task just
when these dependencies are fulfilled.

3.2. Problems

However, the task-level parallelism rises new problems
especially for the resource management. We will give an
overview of these problems in the following.

Mutual Exclusion and the Waiting State One require-
ment for the resource management in AUTOSAR is that
a resource access must never put a task into the waiting

3



state (see sect. 2.1.2). This is achieved by the OSEK Pri-
ority Ceiling Protocol, where a task accessing a resource
is boosted above the maximum priority of all tasks that
may access this resource for the time of the resource ac-
cess. Thus, the task holding a resource is executed by all
means before any other task possibly accesses this resource
(cf. fig. 3(a)).

On an SMT processor, it can happen that one task is
holding a resource and another task still running would need
to access the same resource. This would have to result in
the blocking of the second task because of the required mu-
tual exclusion of accesses to the same resource. However,
the AUTOSAR task model does not comprise such a state.
Putting the task into the waiting state is not possible. On the
one hand, the definition of the resource management forbids
this explicitly. On the other hand, basic tasks do not even
have a waiting state but are nevertheless allowed to access
resources.

Also transitions into other states are not possible. Putting
the blocked task into the ready state would result in the task
being scheduled again immediately, due to the definition of
this state. The suspended state can only be assumed through
the termination of the task and thus also does not present a
solution. Furthermore, if the blocked task is defined as non-
preemptive, such a state transition would violate the non-
preemptive scheduling policy.

Deadlocks Another point is the avoidance of deadlocks
through the OSEK PCP. Here again, this only works on a
single-threaded hardware (see fig. 3(a)). Let task T1 access
resources r1 and r2 nested, and task T2 access the same
resources in the reverse order. When T1 has locked r1, T2

might still be running on an SMT processor. Now if T2

locks r2 in the meantime, both tasks will come to a point
where they are trying to lock the resource held by each other
(see fig. 3(b)).

As can be seen, the hitherto AUTOSAR standard using
the OSEK PCP is not able to cope with these synchronisa-
tion problems occurring in multithreaded processors.

Access to Shared Data Structures Through the parallel
execution of tasks it may happen, unlike in a single-threaded
processor, that two tasks need to perform a rescheduling
at the same time. Therefore, they need to access and es-
pecially alter the scheduler’s FIFO queues containing the
ready tasks. In a single-threaded processor this can never
happen, because a task performing a rescheduling will auto-
matically run with the highest priority. Hence, the access to
the scheduler would need to be synchronised in some way
for multithreaded task execution. Using mutual exclusion
will not solve this problem, because in fact it would intro-
duce a new blocked state for tasks and result in an unpre-
dictable timing behaviour.

(a) Single-threaded: only one task running. Deadlocks are prevented by
priority ceiling

(b) Multithreaded: two tasks sharing the processor can lead to a deadlock!

Figure 3. Resource accessed in a single- and
multithreaded processor

4. Related Work

4.1. Resource Management for Multiprocessing
Systems

Considerable work on synchronisation has been done
for the area of multiprocessors. Rajkumar et al. [20] ex-
tended the priority ceiling protocol [21] for multiprocessor
use (Multiprocessor Priority Ceiling Protocol, MPCP). The
MPCP distinguishes between application and synchronisa-
tion processors. Tasks are statically assigned to an appli-
cation processor. Local critical sections (LCS) are executed
on the application processor according to the PCP. Synchro-
nisation processors are responsible for the execution of a
global critical section (GCS). However, nested locks of re-
sources of different types are not possible, because the ac-
cess to the global critical section can lead to long blocking
periods.

The Multiprocessor Stack Resource Policy (MSRP) by
Gai et al. [7] extends the SRP algorithm for single-threaded
multiprocessors [4]. SRP is based on the priority ceiling
protocol. Similar to the MPCP, resources are divided into
LCS and GCS. However, MSRP executes GCSs locally on
the respective processor. Nested resource occupation here
is also forbidden, as it can lead to deadlocks.

The former two concepts were developed for their use
in multiprocessor systems. Lo [15] proposed a solution
for thread scheduling and resource management on a multi-
threaded processor. Processor performance is distributed on
several logical processors (LP). While a thread T1 on LP1

4



holds a resource R, and a thread T2 on LP2 is blocked be-
cause of its access on the same resource R, the processing
time of LP2 is bestowed to LP1. After T1 has released R,
this processing time is given back to LP2. This approach is
called LP-Time Inheritance and Returning.

The presented concepts use a static assignment of tasks
to real processors or logical processor. If tasks are blocked
by other tasks, their processing time is transferred temporar-
ily. On our proposed SMT architecture this is not possible,
because it exploits the parallelism on the instruction level.
If tasks are blocked, the related processing time (issuing of
one or more instructions in a clock cycle) is lost. Further-
more, AUTOSAR does not distinguish between local and
global resources. Forbidding the use of nested locks like in
[20, 7] presents a problem, as these are explicitly allowed
by the OSEK OS specification. A dynamic stack manage-
ment like proposed by Baker [4] also is not necessary, be-
cause each task is assigned its private stack statically to gain
a higher performance for the targeted automotive applica-
tions.

4.2. Thread Synchronisation

An inherent problem in multithreaded environments is
the synchronisation of concurrent threads that need to ac-
cess shared data. Lamport [13] devised a solution called
“Bakery Algorithm” extending Dijkstra’s work [5] in this
domain. Another solution was presented by Peterson [19].
However, both approaches use busy waiting to enter a criti-
cal section that is currently blocked by another thread. Such
busy waiting will waste processing cycles that could be
utilised otherwise by the blocking thread to finish the crit-
ical section earlier. Therefore, typical solutions for mutual
exclusion suspend the execution of the blocked thread until
the lock is free. As we have shown above, the AUTOSAR
task model cannot cope with this.

The avoidance of mutual exclusion and blocking has
been a research topic for many years. The first lock-free
algorithm was presented by Lamport [14]. Further work by
Herlihy [9] has shown the necessity for universal synchroni-
sation primitives. These can be provided by a processor as
an atomic COMPARE&SWAP instruction (CAS) or a LOAD
LINK/STORE CONDITIONAL instruction pair (LL/SC). Ac-
cording to Michael [16], the CAS instruction can be emu-
lated using the LL/SC pair. Valois [24] has presented an im-
plementation of lock-free queues using the CAS primitive.
Anderson et al. [1] have shown the benefits for real-time
computing using lock-free synchronisation instead of mu-
tual exclusion. These techniques can present a solution to
some of the problems stated in section 3.2.

5. Task Filtering

To fulfil the requirements on a resource management like
it is defined by AUTOSAR, we propose a mechanism of fil-
tering tasks. For this purpose we extend the OSEK PCP and
scheduling and thus adapt it for its use in multithreaded pro-
cessors. Initially, we have to define some containers used by
our algorithm and clarify some terms used in the following.

Definition 1 (Containers)

• The Execution Set E contains all tasks that are cur-
rently scheduled into the SMT processor’s thread slots.

• The Active Set A contains all active tasks (states ready
and running), i.e. the tasks from all FIFO queues of the
scheduler (cf. section 2.1.1).

• A task’s resource set RT comprises all resources that
a task T will access during its execution.

• A resource’s task set AR references the active tasks
that might access resource R (T ∈ AR ⇔ R ∈ RT ).

• The Task Filter TF contains tasks, that are ready and
should be executed according to their priority, but can-
not be scheduled yet due to resource conflicts (see def-
inition 2).

Definition 2 (Terms)

• Two tasks T1, T2 have a resource conflict, if they might
use at least one resource R concurrently at runtime
(i.e. {T1, T2} ⊂ AR resp. R ∈ RT1 ∩RT2)

• A task T is ready concerning the resource management
(resource-ready), if

– it does not need any resource, or

– ∀R ∈ RT : T has the highest priority in AR

Based on these premises, we are now able to decide
which tasks shall be allowed to run:

Definition 3 (Task Filtering)
An active task T ∈ A can be put into the execution set E,
i.e. can be scheduled for execution, if it is resource-ready.
All other tasks are in their FIFO queues.
If a task T1 has a resource conflict with a running lower-
priority task T2, which cannot be preempted, T1 is buffered
in the task filter, until T2 can be rescheduled.

We will give a short example, how the previous defini-
tions will work. Let A = {T1, T2, T3} be the active tasks
with descending priorities (PT1 > PT2 > PT3). Resources
are used as follows:

5



• RT1 = {R1, R2}

• RT2 = {R1}

• RT3 = {}

Thus, the resources’ task sets are

• AR1 = {T1, T2}

• AR2 = {T1}

As can be seen, T1 and T2 have a resource conflict on R1

(definition 2). Nevertheless, as T1 has the higher priority
in AR1 , it is regarded as resource-ready and transferred into
the execution set E. T3 does not use any resources, so it can
also be executed directly. Thus we get as execution set:

E = {T1, T3}

In the meantime, T2 is buffered in the task filter TF until
T1 finishes operation.

With this approach, deadlocks are completely avoided.
The filtering of the tasks ensures, that only such tasks are
executed that do not have any resource conflict among each
other, i.e. the execution set E is free of resource conflicts.
For the same reason, no direct blocking can occur.

Figure 4. Extended scheduling model of AU-
TOSAR for an SMT processor. The task filter
ensures that there are no resource conflicts.

Figure 4 shows a schematic representation of the
scheduling mechanism. Between the FIFO queues and the
scheduler, another layer was integrated. Here in the task fil-
ter all tasks are stored that currently have a resource conflict
with other tasks running. Also, the figure shows that mul-
tiple tasks are scheduled simultaneously in the exemplary
four thread slots.

Figure 5 gives an example of task filtering. The sched-
uler starts with the highest priority task T1. As no resources
are used yet, T1 can be scheduled. T2 does not use any re-
sources, so it can also be executed. Now, T3 has a conflict

T1 T2 T3 T4 T5 T6 T7 T8

R1 X
R2 X X
R3 X
R4 X
R5 X X
R6 X X
R7 X X X
R8 X
SC o o o o o o

Figure 5. Example. PT1 ≥ PT2 ≥ . . . ≥ PT8;
task’s resource usage is marked with an ’X’;
the tasks marked with an ’o’ can be executed
simultaneously.

with T1 on resource R5. Thus, T3 is retained in the task
filter for later execution. In the given example, finally six
tasks are ready for execution, whereas T3 and T7 will be
kept in the task filter until the conflicts are resolved.

6. Discussion

In the following section we discuss the concept of task
filtering in more detail. We will show that it does not change
the external behaviour of an operating system implemented
this way and thus the OS will stay AUTOSAR compatible.
We also discuss the treatment of the scheduler as a special
resource.

6.1. Preservation of Task Behaviour

As mentioned, the problems described in 3.2 are elim-
inated through the task filtering by avoiding resource con-
flicts between concurrently executing tasks. But it is also
necessary to check the influences of task filtering on the ex-
ecution order of tasks.

The AUTOSAR scheduling can be subsumed under
these objectives:

1. higher priority tasks are executed before lower priority
tasks: this means that the runtime behaviour of tasks is
not influenced unpredictably by tasks that have a lower
priority (except in the case of shared resources, see 4.);

2. older tasks are executed before younger tasks of the
same priority: tasks are executed in their arrival order;

3. waiting for an event may result in the degradation of
the task to the back of its priorities queue; the task
“gets younger”;

6



4. accesses to resources can boost a task’s priority tem-
porarily.

Objectives 1 and 2 are, basically, ensured through the
definition of the scheduling method (see 3.1). By the in-
teraction with the task filter it can happen, that a task T2

will not be cleared for execution because it has a resource
conflict with an older task T1 of the same priority. In this
case, the scheduler might put a ready task T3 of lower pri-
ority into the execution set. When T1 terminates, we can
distinguish two cases:

• T2 and T3 have no resource conflict: T2 will be sched-
uled immediately after T1 terminates (if no task with
higher priority is ready);

• T2 and T3 have a resource conflict on resource R. Here
the scheduling policy of tasks (non-/preemptable) and
objective 4 must be considered:

– T3 is non-preemptable: T2 will be scheduled
when T3 reaches a synchronisation point (see
2.1.1). This possible blocking is predictable.

– T3 is preemptable and not holding R or any other
resource with higher ceiling priority: T3 is pre-
empted and put into the ready state, T2 is sched-
uled. The delay is predictable.

– T3 is preemptable and holding R: T3 is running
at CPR, rescheduling will take place when T3 re-
leases R and does not hold a resource of higher
ceiling priority. Else rescheduling is triggered
when the priority of T3 sinks below PT2 after re-
lease of other resources. This delay is also pre-
dictable, but must be given special consideration
in the design process.

The given mechanisms will work analogous if T2 and
T3 have a conflict in more than one resource.

Objective 3 results in a reordering of a FIFO queue
through the event mechanism. However, this does not in-
teract with the scheduling.

As we have shown, the externally observable behaviour
of the scheduler will stay the same as when running AU-
TOSAR on a single-threaded processor, or even will be im-
proved through the faster execution of lower priority tasks.
Alone, for timing analysis of tasks it might be necessary
to include some higher delays. This mostly affects the
scheduling system service, which can also be called by
other system services if rescheduling needs to take place.
Here the task filtering will be performed resulting in a
longer runtime. For this overhead, a worst-case upper
bound is set by the maximum number of resources and
active tasks according to the specification. A full timing

and flow analysis after system integration could narrow this
overhead.

The task filtering technique is based on the assumption,
that in such an integrated system tasks exist with disjoint
sets of resources they are using. If there are many tasks
using the same resource, or the system does only provide
one resource like in the OSEK conformance class 1, it can
happen that all tasks will be executed as if running on a
single-threaded processor.

6.2. Scheduling

In the original OSEK specification the scheduler is
treated as a special resource and even the only one for sys-
tems of OSEK conformance class 1. Naturally, it can be
used by all tasks. With the presented task filtering method
this would not make sense because it would prevent any
parallel execution of tasks.

The classification of the scheduler as a resource stems
from the scheduler manipulating globally shared data struc-
tures, i.e. the FIFO queues containing the ready tasks.
However, the inconsistency of these structures must not
necessarily be prevented by mutual exclusion, like this is
done through the OSEK specification. The FIFO queues
could also be manipulated using non-blocking synchroni-
sation techniques [24, 1]. Thus, the task model of OSEK
and AUTOSAR will be preserved and the timing behaviour
of the highest priority tasks will not change in any harmful
way. This would only require the availability of hardware-
implemented primitives, i.e. a COMPARE&SWAP instruc-
tion or the LOAD LINK/STORE CONDITIONAL pair (see
section 4.2).

In some cases it may happen that one task activates an-
other task that has a higher priority than all currently run-
ning tasks, but has a resource conflict with at least one run-
ning task. However, to conserve the timing behaviour this
task should be scheduled as soon as possible. Therefore it
is necessary to preempt the blocking task (if possible; see
6.1 above) and remove it from the processor, i.e. put it into
the ready state. Just then the newly arrived task can be ex-
ecuted. From the hardware point of view this will need the
possibility to raise an interrupt for another thread slot so that
the task running there will carry out a rescheduling. After
all conflicting tasks have been removed, the new task can
start running. Then the OS has to try filling the free thread
slots again.

7. Evaluation

To prove the practicability of the task filtering method,
we performed a prototypical implementation of an AU-
TOSAR OS scheduler. This implementation was done on

7



the CarCore processor [23]. Its architecture is shown in fig-
ure 6. CarCore is a two-way four-threaded SMT processor
designed for embedded real-time applications. It is binary
compatible with the Infineon TriCore architecture [10, 11],
which is widely used in the automotive domain. The pro-
cessor comprises two pipelines, one for integer and one for
address operations. The first stages Instruction Fetch and
Schedule are shared between the two pipelines. A separate
Instruction Window is assigned to each thread slot buffering
instructions after fetching. Instructions are issued in-order.
Two instructions of one thread can be issued in parallel, if
an integer instruction is directly followed by an address in-
struction. Else, the other pipeline is filled by an instruction
from another thread. For this purpose, the processor can
manage up to four threads. The four thread slots are con-
trolled by the Thread Manager. The Thread Manager sets
the priorities for each thread slot in the Schedule stage, and
also is responsible for swapping the executed threads from
and to memory. Suspended threads are stored in a dedicated
part of memory as so-called Thread Control Blocks (TCB).

Figure 6. Architecture of the CarCore proces-
sor

In some earlier research [12] we found out that task
switching in a single-threaded Infineon TriCore takes about
1400 clock cycles. The most expensive part here is the de-
termination of the next task, which amounts to up to 900
clock cycles. 300 more cycles are needed to swap and ad-
just the OS management data. The remaining 200 cycles
are spent loading the memory protection registers.

In the CarCore, context switching overhead from one
thread slot to another is zero cycles. Swapping out a thread
from one thread slot and loading another thread, i.e. saving
all register values of one thread and restoring the register
set of another takes about 50 clock cycles. Loading of the
memory protection registers takes another less then 10 cy-

cles. This work is mostly done by dedicated hardware and
must only be initiated by the OS. While one thread slot is
being swapped, the other slots are still running.

The task filtering brings in only a minor overhead. As
the number of resources is limited by AUTOSAR to up to
16, the tasks’ resource sets can be implemented using bit
sets. The filtering thus will be implemented using bitwise
boolean operations which are universally provided by pro-
cessors. In our evaluations, selecting a new AUTOSAR task
to be run within a thread slot took up to 1100 cycles in-
cluding the task filtering. Thereto we have to add about
300 cycles for the adjustment of OS management data and
60 cycles for the context switch, i.e. the swapping of the
register set and the memory protection registers. So, in
total rescheduling of a thread slot will still take less then
1500 clock cycles. This is slightly more than on the single-
threaded TriCore, but allows a multithreaded execution of
AUTOSAR tasks.

If it is necessary to preempt other running tasks before
starting a higher priority task, rescheduling may take some
more time. However, this time is bounded as we already
have shown in section 6.1, but depends on the application.

8. Conclusion

AUTOSAR OS was designed to run on a single-threaded
hardware. We have shown which problems arise when try-
ing to port the current AUTOSAR OS specification (Ver-
sion 3.1.1, [3]) onto an SMT processor. Resource accesses
of tasks can result in blocking other tasks during execution,
which cannot be coped with by AUTOSAR’s task model.
AUTOSAR OS requires the implementation of a priority
ceiling protocol, however, deadlocks can still occur when
running on a multithreaded processor. To avert these prob-
lems, we proposed the task filtering method, where only
such tasks are executed concurrently that do not have any
resource conflict. Task filtering will keep the predictability
of the integrated system. However, in some cases a WCET
analysis will need to allow for increased timing tolerances.

To allow the use of AUTOSAR on SMT processors, our
work proposes the following extensions of the specification:

• Scheduling is extended by the Task Filtering Method
to prevent the concurrent execution of tasks that might
use the same resources; thus, an internal task state
resource-ready is introduced;

• the hardware must provide a primitive for Non-
Blocking Synchronisation, e.g. a COMPARE&SWAP
instruction or a LOAD LINK/STORE CONDITIONAL
instruction pair;

• the hardware must allow a thread slot to raise inter-
rupts in other thread slots.

8



Today’s benchmark suites usually are designed to evalu-
ate the raw computing power of a processor. To the best of
our knowledge, they do not address the problems of thread
concurrency and thread synchronisation. One of our fu-
ture goals is to design a benchmark that explicitly allows
to evaluate the behaviour of a processor running concurrent
threads that access shared resources.

Also, we want to extend the scheduling data structures
by the lock-free algorithms [24] presented in section 4.2.
Thus we will be able to evaluate the complete overhead of
the task filtering technique. The lock-free algorithms must
be implemented in such a way that the WCET analysability
of the code is retained.

With this work we also have taken a step toward em-
bedded multi-core processors. Meanwhile, the usage of
multi-core architectures is an inevitable trend in processor
architecture even in the embedded area. Developers have
to cope with similar problems when porting their software
to such new processors. The task-level parallelism of pro-
gram execution again poses problems of synchronisation. In
the MERASA1 project [8] we are developing an embedded
multi-core processor for hard real-time applications. The
results presented in this paper will be transferred to our new
multi-core platform.

References

[1] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time
computing with lock-free shared objects. ACM Trans. Com-
put. Syst., 15(2):134–165, 1997.

[2] AUTOSAR AUTomotive Open System ARchitecture.
http://www.autosar.org/.

[3] AUTOSAR GbR. AUTOSAR Specification of Operating Sys-
tem, 3.1.1 edition, Feb. 2009.

[4] T. P. Baker. A stack-based resource allocation policy for
realtime processes. In IEEE Real-Time Systems Symposium,
pages 191–200, 1990.

[5] E. W. Dijkstra. Solution of a problem in concurrent pro-
gramming control. Commun. ACM, 8(9):569, 1965.

[6] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,
and D. M. Tullsen. Simultaneous multithreading: A plat-
form for next-generation processors. IEEE Micro, 17(5):12–
19, 1997.

[7] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-
lization of real-time task sets in single and multi-processor
systems-on-a-chip. In IEEE Real-Time Systems Symposium,
pages 73–83. IEEE Computer Society, 2001.

[8] M. Gerdes, J. Wolf, J. Zhang, S. Uhrig, and T. Ungerer.
Multi-Core Architectures for Hard Real-Time Applications.
In ACACES 2008 Poster Abstracts, L’Aquila, Italy, July
2008. Academia Press, Ghent (Belgium).

[9] M. Herlihy. Wait-free synchronization. ACM Trans. Pro-
gram. Lang. Syst., 13(1):124–149, 1991.

1Multi-Core Execution of Hard Real-Time Applications Supporting
Analysability

[10] Infineon Technologies AG. TriCore 1 Architecture Volume
1: Core Architecture V1.3 & V1.3.1, Jan. 2008.

[11] Infineon Technologies AG. TriCore 1 Architecture Volume
1: Instruction Set V1.3 & V1.3.1, Jan. 2008.

[12] F. Kluge, J. Mische, S. Uhrig, T. Ungerer, and R. Zalman.
Use of Helper Threads for OS Support in the Multithreaded
Embedded TriCore 2 Processor. In C. Lu, editor, Proceed-
ings Work-In-Progress-Session of the 13th IEEE Real-Time
and Embedded Technology and Applications Symposium,
pages 25–27, Apr. 2007.

[13] L. Lamport. A new solution of Dijkstra’s concurrent pro-
gramming problem. Commun. ACM, 17(8):453–455, 1974.

[14] L. Lamport. Concurrent reading and writing. Commun.
ACM, 20(11):806–811, 1977.

[15] S.-W. Lo. Data sharing protocols for smt processors. In
H. Haddad, editor, SAC, pages 891–895. ACM, 2006.

[16] M. M. Michael. Scalable lock-free dynamic memory alloca-
tion. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and imple-
mentation, pages 35–46, New York, NY, USA, 2004. ACM
Press.

[17] OSEK VDX Portal. http://www.osek-vdx.org.
[18] OSEK group. OSEK/VDX Operating System, 2.2.3 edition.
[19] G. L. Peterson. A new solution to lamport’s concurrent

programming problem using small shared variables. ACM
Trans. Program. Lang. Syst., 5(1):56–65, 1983.

[20] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In IEEE Real-Time
Systems Symposium, pages 259–269. IEEE Computer Soci-
ety, 1988.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175–1185, 1990.

[22] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. In ISCA
’98: 25 years of the international symposia on Computer
architecture (selected papers), pages 533–544, New York,
NY, USA, 1998. ACM.

[23] S. Uhrig, S. Maier, and T. Ungerer. Toward a Processor Core
for Real-time Capable Autonomic Systems. In Proceedings
of the 5th IEEE International Symposium on Signal Process-
ing and Information Technology, pages 19–22, Dec. 2005.

[24] J. D. Valois. Implementing lock-free queues. In In Proceed-
ings of the Seventh International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV, pages 64–
69, 1994.

9


