
CSE 241
Number Systems & Binary Arithmetic

Positional Number Systems
� aka, Radix-Weighted Positional Number System

� Consider a base r number system
� Radix point separates integer & fractional components
� Finite set of r symbols called digits
� Position of digit determines weight of digit

� A positive number, N, can be written in positional notation as:
N = (dn-1 dn-2 … d1 d0 . d-1 d-2 … d-m)r

where
. = radix point
r = radix (base) of number system
n = number of integer digits to the left of the radix point
m = number of fractional digits to the right of the radix point
di = integer digit i, where n-1 ≥ i ≥ 0
di = integer digit i, where -1 ≥ i ≥ -m
dn-1 = most significant digit
d-m = least significant digit

� General form as a power series in r

� Example
� 78.52610

� 7 x 101 + 8 x 100 + 5 x 10-1 + 2 x 10-2 + 6 x 10-3

� 214.038

� 2 x 82 + 1 x 81 + 4 x 80 + 0 x 8-1 + 3 x 8-2

Decimal to Binary Conversion
� Procedure

� Separate the decimal number into two portions, the integer component, i, & the fractional
component, f.

� First, consider the integer component.
� Choose the largest power of 2, 2n, less than or equal to i.

i/2n = q,rn bn = q
rn/2

n-1 = q,rn-1 bn-1 = q
rn-1/2

n-2 = q,rn-2 bn-2 = q

r1/2

0 = q b0 = q
� Alternate method for the integer component.

i/b = q0,r b0 = r
q0/b = q1,r b1 = r
q1/b = q2,r b2 = r

.
� Continue until q=0

� Next, let’s consider the fractional component.
f x 2 = b-1 . f-1

f-1 x 2 = b-2 . f-2

 . . .
f-m+1 x 2 = b-m . f-m

� When f-m = 0, stop
� Put the integer & fractional results together.

� bn bn-1 … b1 b0 . b-1 b-2 … b-m

� Example
� Convert 483.7510 to binary

� First, consider the integer portion (using the first method)
� 483/256 = 1, 227 b8

� 227/128 = 1, 99 b7

� 99/64 = 1, 35 b6

� 35/32 = 1, 3 b5

� 3/16 = 0, 3 b4

� 3/8 = 0, 3 b3

� 3/4 = 0, 3 b2

� 3/2 = 1, 1 b1

� 1/1 = 1, 0 b0

� (b8 b7 b6 b5 b4 b3 b2 b1 b0)2

� Consider the integer portion using the alternate method
� 483/2 = 241, 1 b0

� 241/2 = 120, 1 b1

� 120/2 = 60, 0 b2

� 60/2 = 30,0 b3

� 30/2 = 15,0 b4

� 15/2 = 7, 1 b5

� 7/2 = 3, 1 b6

� 3/2 = 1, 1 b7

� 1/2 = 0, 1 b8

� (b8 b7 b6 b5 b4 b3 b2 b1 b0)2

� Next, consider the fractional portion
� 0.75 x 2 = 1.5 b-1

� 0.5 x 2 = 1.0 b-2

� (b-1 b-2)2

� 112

� Finally, combine the integer & fractional portions.
� 111100011.112

Binary to Decimal Conversion
� Procedure

� bn-1 x rn-1 + bn-2 x rn-2 + … + b0 x r0 + b-1 x r-1 + b-m+1 x r-m+1 + b-m x r-m

� Example
� Convert 1011.1012 to decimal

� (b3 b2 b1 b0 . b-1 b-2 b-3)2

� 1 x 23 + 0 x 22 + 1 x 21 +1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3

� 8 + 2 + 1 + .5 + .125
� 11.62510

Storage L imitations
� A storage device is limited by the number of bits it can store

� An n bit storage device can hold 2n possible values

Binary Number System
� Digits

� 0,1

� Radix point
� Binary point

� Example
� 11011.101

� Notation
� 210 ≡ K (kilo)
� 220 ≡ M (mega)
� 230 ≡ G (giga)

� Key powers of 2

� Example
� 64 M
� 64 x 220 = 26 x 220 = 226

� 67,108,864

n n
n n

2 2
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1,024
11 2,048
12 4,096
13 8,192
14 16,384
15 32,768
16 65,536
20 1,048,576
30 1,073,741,824

Convenient Number Systems
� Commonly used number systems in digital systems

� Binary
� Base 2
� 0, 1

� Octal
� Base 8
� 0, 1, 2, 3, 4, 5, 6, 7

� Hexadecimal
� Base 16
� 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
� Notation

� 0x
� $

Converting from Base A to Base B when B=Ak

� Base A to B when B=Ak and k is a positive integer
� Group digits of N in groups of k digits proceeding away from the radix point in both

directions
� Replace each group with its equivalent digit in base B.

� Base B to A when B=Ak and k is a positive integer
� Replace each base B digit in N with equivalent k digits in base A.

� Examples:
� 0xA9 → 101010012

� 11101002 → 0x74
� 2418 → 101000012

� 10111010012 → 13518

Binary Addition
� Addition Table

� Using the above table, proceed as with base ten.

� Example
� Consider 1410 + 910 using binary addition

� Sum = 101112 = 2310

0

1

0

1

1

0

+ 0 1

Carry
1

1 1 1 0
+ 1 0 0 1

1 0 1 1 1

1

Binary Subtraction
� Consider M-N

� M � Minuend
� N � Subtrahend

� Table

� Using the above table, proceed as with base ten.

� Example
� Consider 3710-1110 using binary subtraction

� Difference = 110102 = 2610

Binary Multiplication
� Multiplication Table

� Using the above table, proceed as with base ten.

� Example
� Consider 2210×610 using binary multiplication

� Product = 100001002 = 13210

0
1

0
1

1
0

- 0 1
Subtrahend

Minuend
Borrow

1

1 0 0 1 0 1
- 1 0 1 1

1 1 0 1 0

111 0

0
1

0
0

0
1

x 0 1

1 0 1 1 0
 1 1 0x

0 0 0 0 0

1 0 0 0 0 1 0 0

1 0 1 1 0
 +1 0 1 1 0

Binary Division
� Division consists of a series of repeated multiplications & subtractions.

� Process analogous to base ten division.

� Example
� Consider 21410/510 using binary division

� Quotient = 1010102 = 4210

� Remainder = 1002 = 410

Extending Ar ithmetic Operations to Other Bases
� These operations can be extended to other bases

� Generate tables
� Carry procedure similar to those previously described

� Often, it is easier to first convert numbers to decimal, carry out operation, and convert the
result to the desired base.

Signed Numbers
� Signed numbers are represented using sign-magnitude or complement notation.

� The most significant bit represents the sign bit, indicating whether the number is positive or
negative.

� Signed Number Range
� [-2n-1, 2n-1 - 1]

� r’s complement representation
� [-2n-1+1, 2n-1 - 1]

� (r-1)’s complement & sign-magnitude representation

� Unsigned Number Range
� [0, 2n - 1]

11010110

101010

101
101

101

101

000

000
100

000

011

011

100

110

111

Sign-magnitude Representation
� Consider a number, N, in base r:

� Nr = (an-1, an-2, … , a1, a0)

� Sign
� an-1 = 0 if Nr ≥ 0
� an-1 = r-1 if Nr ≤ 0

� Magnitude
� an-2, an-3, …, a1, a0

� Example
� Represent 3 as a 16 bit number using sign-magnitude representation

� 0000 0000 0000 0011
� Represent -3 as a 16 bit number using sign-magnitude representation

� 1000 0000 0000 0011

Radix Complement
� aka

� r’s Complement
� True Complement

� Procedure
� Consider a number, Nr, in base r.

� Let
� n ≡ number of integer digits in Nr

� m ≡ Number of fractional digits
� For Nr = 0,

� 0
☞ This case is defined since rn - 0 is an n+1 bit result

✓ Result must have n+m bits
� For Nr<>0,

� rn - Nr

� Specific Cases
� 10's complement (base 10)
� 2's complement (base 2)

� Radix Complement Examples
� Determine the 10's complement of 5252010

� 105 - 52520 = 47480
� Determine the 2’s complement of 1011002

� 10000002 - 1011002 = 0101002

� Simple Algorithm
� Start with the least significant digit & move toward the most significant (right to left)
� Retain every digit until the first nonzero digit, ai, is reached.
� Replace ai with (r- ai)
� Replace each remaining digit, aj, (if any) with (r-1-aj)

S

Sign Bit

Magnitude

� For 2’s Complement
� Start at the least significant bit and move toward the most significant bit.
� Retain all zeros, until the first one, ai, is reached.
� Retain ai

� Complement all bits, aj, more significant than ai

� Examples
� Determine the 10's complement of 49601010

� 503990
� Determine the 10's complement of 367.2410

� 632.76
� Determine the 2's complement of 11010102

� 00101102

Diminished Radix Complement
� aka

� (r-1)’s Complement
� Radix-minus-one Complement

� Procedure
� Consider a number, Nr, in base r.

� Let
� n ≡ number of integer digits in Nr

� For Nr �0,
� rn - r-m - Nr

� n ≡ Number of integer digits
� m ≡ Number of fractional digits

• Note that for a number without a fractional component, r-m = 1

� Specific Cases
� 9's complement (base 10)
� 1's complement (base 2)

� Examples
� Determine the 9's complement of 5252010

� 105 - 52520 -1
� 47479

� Determine the 1's complement of 1011002

� 10000002 - 1011002 - 1
� 0100112

� Determine the 1's complement of 11010.10112

� 1000002 - 1011002 - 0.0001
� 00101.01002

� Simple Algorithm
� Start with the least significant digit & move toward the most significant (right to left)
� Replace every digit, ai, with r-1- ai

� For 1’s Complement
� Complement every bit

� Examples
� Determine the 9's complement of 49601.8310

� 50398.16
� Determine the 1’s complement of 1101012

� 0010102

Notes on r ’s & (r -1)’s Complements
� Taking the complement of a complement returns the original number

� (r-1)’s complement notation & sign-magnitude notation have a positive & negative 0
� r’s complement notation does not

� Relationship between r’s & (r-1)’s complements
� r’s complement = (r-1)’s complement + 1

� Exception
� 1s 00…00 which represents -10n

r in the r’s complement representation

Notes on Signed Numbers
� Textbook

� Negative numbers appended with 1 at MSB position

� Class
� Negative numbers start with r-1 in MSB position

Signed Number Examples
� Examples

� Represent the following numbers in 10’s complement, 9’s complement, and sign-
magnitude representations using 4 digits
� 34

� 10’s complement = 0034
� 9’s complement = 0034
� Sign magnitude = 0034

� -178
� 10’s complement = 10000 - 178 = 9822
� 9’s complement = 10000 - 178 - 1 = 9821
� Sign magnitude = 9178

� Represent the following numbers in 2’s complement, 1’s complement, and sign-magnitude
representations using 8 bits
� 7210 = (10010002)

� 2’s complement = 01001000
� 1’s complement = 01001000
� Sign magnitude = 01001000

� -5610 = (1110002)
� 2’s complement = 11001000
� 1’s complement = 11000111
� Sign magnitude = 10111000

Sign-Extension
� When an n digit signed number is represented by n+k bits using complement representation,

the most significant k bits must replicate the sign bit of the n digit number.

� Example
� Consider the -49

� 8-bit 2’s complement representation
� 11001111

� Extended to 16-bits
� 1111111111001111

� What happens if the sign bit is not properly extended?

Implementation of Addition & Subtraction
� Most computers use the radix complement number system to perform integer arithmetic.

� Why?
� Amount of circuitry required for these operations is minimized.
� A binary adder & complementing circuits can handle both addition & subtraction.

Subtraction with r ’s Complement
� Procedure (M-N)

� Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
� Add minuend, M, to r’s complement of subtrahend, N.
� If an end carry occurs, discard it.

� Indicates positive result
� If not, the result is a negative value represented in r’s complement notation.

� Example #1
� Consider 6710 - 1510 using 10's complement

� 10's complement of 15 = 985
� Note 9 indicates negative

� 067 + 985 = 1052
� Discard end carry
� Difference = 05210

� Example #2
� Consider 2110 - 8910 using 10's complement

� 10's complement of 89 = 911
� 021 + 911 = 932
� No end carry
� Result (932) is in 10's complement notation
� Difference = -6810

� Example #3
� Consider 8110 - 4510 using 2's complement

� 10100012 - 001011012

� 2's complement of 4510 = 110100112

� 001010001 + 11010011 = 100100100
� End carry occurs
� Discard end carry
� Difference = 001001002 = 3610

� Example #4
� Consider 5310 - 6010 using 2's complement

� 001101012 - 001111002

� 2's complement of 6010 = 110001002

� 00110101 + 11000100 = 11111001
� No end carry
� Result (111110012) is in 2's complement notation
� Difference = 111110012 = -710

Subtraction with (r -1)’s Complement
� Procedure (M-N)

� Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
� Add minuend, M, to (r-1)’s complement of subtrahend, N.
� If an end carry occurs, add 1 to the least significant digit.

� Referred to as an end-around carry
� Indicates positive result

� If not, the sum is a negative value represented in (r-1)’s complement notation.

� Example #1
� Consider 5810 - 3710 using 9's complement

� 9's complement of 37 = 962
� Note 9 indicates negative

� 058 + 962 = 1020
� End carry occurs
� Add end carry
� Difference = 2110

� Example #2
� Consider 1110- 5310 using 9's complement

� 9's complement of 53 = 946
� Note 9 indicates negative

� 011 + 946
� No end carry
� Result (957) is in 9’s complement notation
� Difference = - 4210

� Example #3
� Consider 8110 - 4510 using 1's complement

� 1's complement of 45 = 1101000102

� 01010001 + 11010010 = 100100011
� End carry occurs
� Add end carry
� Difference = 3610

� Example #4
� Consider 2510 - 4210 using 1's complement

� 1's complement of 42 = 110101012

� 00011001 + 11010101 = 11101110
� No carry occurs
� Result is in 1’s complement notation
� Difference = - 1710

Overflow Conditions
� An overflow occurs when the result of an arithmetic operation falls outside the available range

that can be stored.

� Condition codes in the processor are maintained to determine if an overflow has occurred.

� Detection of overflow for addition of signed numbers
� Carries into & out of MSB (sign bit) differ
� Two positive numbers added & negative result is obtained
� Two negative numbers added & a positive result is obtained

� Note that overflow cannot occur if two number of differing signs are added

Compar ison of 1's & 2's Complements
� 1's complement is easier to implement by digital circuits.

� 2's complement requires only 1 arithmetic operation to carry out subtraction where 1's
complement requires 2 due to the end-around carry.

� 1's complement has the disadvantage of 2 zeros.
� Positive 0: 0...0
� Negative 0: 1...1

Shifts & Rotates
� Logical Shifting

� Bits shifted left or right
� Logical 0 shifted in
� Shifting n positions left

implements multiplication by
2n

� Example
� Shift 11010110 logically left 3 places

� Result: 10110000

0 x

0x

Logical Shift Right

Logical Shift Left

� Arithmetic Right Shifting
� MSB shifted in
� Maintains sign bit
� Shifting n positions left

implements division by 2n

� Example
� Arithmetic shift 11010110 right 3 places

� Result: 11111010

� Rotating
� Bits rotated left or right
� Bit(s) rotated out is (are)

shifted in
� Example

� Rotate 11010010 left 5 places
� Result: 01011010

Codes
� Code Group

� Unique string of binary digits representing a symbol (character, digit, etc.)

� Decimal Codes
� BCD

� Binary Coded Decimal
� Represents decimal digits

� 0 → 9
� Weighted Codes

� Position of 1 indicates weight
� 8421 Code

� Weighted Code
� Most common BCD code

� 2421 Code
� Self-complementing

� 1’s complement of code yields 9’s complement of number
� Example

• 9’s complement of 61 is 38
• 1’s complement of 11000001 is 00111110

� 7536 Code
� Weights of 7, 5, 3 are positive
� Weight of 6 is negative

� 5421 Code
� Biquinary Code

� 5043210 weighted code
� Two of seven bits are 1

� First 1 in first two bits
� Second 1 in last 5 bits

y x
Arithmetic Shift Right

x

x

Rotate Right

Rotate Left

� Excess-three Code
� aka, XS-3 code
� Nonweighted BCD
� 3 is added to each 8421 code group
� Self-complementing
� Example

� 74
• 0111 + 0011 = 1010
• 0100 + 0011 = 0111
• XS-3 code is 10100111

� 2-out-of-5 Code
� Nonweighted code
� Exactly 2 of 5 bits are 1
� Error detecting

� Unit-Distance Codes
� Only a single bit changes between any two successive coded integers
� Example

� Gray Code
 Decimal Gray

Number Code
 0 0000
 1 0001
 2 0011
 3 0010
 4 0110
 5 0111
 6 0101
 7 0100
 8 1100
 9 1101
 10 1111
 11 1110
 12 1010
 13 1011
 14 1001
 15 1000

� Alphanumeric Codes
� Uppercase/Lowercase letters of alphabet
� Digits (0 → 9)
� Punctuation
� Control Operations

� Backspace
� Form Feed
� Carriage Return
� Escape
� …

� Special Characters
� ($ # @ = + [] * - …)

� American Standard Code for Information Interchange
� aka, ASCII
� 7-bit
� Examples

� d ≡ 1100100
� 9 ≡ 0111001
� R ≡ 1010010
� * ≡ 0101010

� Unicode
� 16-bit
� International

� English as well as many other languages
� Punctuation marks
� Mathematical Symbols
� Technical Symbols
� Geometric Shapes
� Dingbats

� Error Detection
� A code is said to be n-error detecting if the minimum of n errors that cannot be detected is

n+1
� Error defined as a bit being complemented erroneously

� Example
� 2-out-of-5 codes

� Single error detecting
� Example

• A 01010 transmitted as 01110
• Error can be detected

� Parity
� A parity bit can be concatenated to a code word that does not incorporate error

detection to make it a single error detecting code
• Detects an odd number of errors

� Even Parity
• The code word (including the parity bit) has an even number of 1’s

� Odd Parity
• The code word (including the parity bit) has an odd number of 1’s

� Example
• The 7-bit ASCII code is often concatenated with a parity bit
• H (odd parity) ≡ 11001000

� Distance between two code groups
� The number of bits that must change so that the first code group becomes the second

� Minimum Distance
� Minimum distance between any two valid code groups in a coding scheme

� Maximum number of detectable errors
� D = M - 1

� D ≡ error detecting capability of code
� M ≡ minimum distance

� Error Correction
� It is possible to construct a code whereby a finite number of errors can be corrected

� C + D = M - 1 where C ≤ D
� C ≡ Number of erroneous bits that can be corrected
� D ≡ Number of errors that can be detected
� M ≡ Minimum distance of code

� Error Detection vs. Error Correction
� Consider a 6-bit code group used to represent 8 unique codes
� Graphical Representation

� First six bits are along the x-axis, last six bits are along the y-axis

� Is the codegroup error detecting, error correcting, both, or neither?

� Code B is changed from 010010 to 011011. Does this change whether it is error detecting
or correcting? If so, how?

000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

A C

H

GE

D F

B

000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

A C

H

GE

D F

B

� Error Correction
� Hamming Code

� Derived by R.W. Hamming
� Consider the case of four information bits

� Three parity bits are included
• Each calculated over a specified set of bits

� Let pi represent parity bit i
� Let bi represent parity information bit i

� p1 ≡ Even parity over positions 1, 3, 5, 7
� p2 ≡ Even parity over positions 2, 3, 6, 7
� p3 ≡ Even parity over positions 4, 5, 6, 7

� Example
� Code word to be coded

• 1101
� We need to determine p1, p2, p3

• 110_1_ _
� Hamming Code

• 1100110
� To detect/correct a single error, a binary check number is created

� c3
*c2

*c1
*

� ci is pi recalculated
� The binary check number determines the position of the bit that must be

complemented to obtain the error free code word
• If the binary check number is zero, the code received is error free

� Example
• A 1101110 is received
• c3

*c2
*c1

* = 100
• Complement the 4th (1002) bit to correct the code word (1100110)

� The Hamming Code can be generalized to any number of bits
� m ≡ number of information bits
� k ≡ number of parity bits
� m ≤ 2k - k - 1
� m+k bits are required for code word
� Let us number positions from right to left starting with 1 and ending at m+k
� Parity bit, pi, in position 2i, considers every other group of 2i bits beginning with the

parity bit in position 2i

� Binary check number ck
* … c1

* determines the position that must be complemented
to determine the correct code

1 Position47 25 36

p Code Group Formatpb pb bb
134 22 13

� Single Error Correction & Double Error Detection
� Append a parity bit to the entire code group and implement even parity

� Not used in calculation of other parity bit calculations
� Interpreting a Code Word

� Case 1
� ck

* … c1
* = 0…0 and additional parity bit is correct

• No single or double errors
� Case 2

� ck
* … c1

* ≠ 0…0 and additional parity bit is incorrect
• Single error, corrected by complementing bit in position ck

* … c1
*

� Case 3
� ck

* … c1
* ≠ 0…0 and additional parity bit is correct

• Two errors, not correctable

� Check Sum Digits for Error Correction
� Consider 5 + 4 ZIP Codes

� 2-out-of-5 code is used to encode each digit
� A checksum digit is appended to ZIP code so that sum is a multiple of 10

� If a single digit is in error (number of 1’s ≠ 2) the checksum can be used to correct
check digit

References
� M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals, Prentice

Hall, Inc., 2000

� Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, Digital Logic Circuit
Analysis and Design, Prentice Hall, Inc., 1995

� Donald D. Givone, Digital Principles and Design, McGraw-Hill, 2003

ZIP Digit

Sum
+

Check Sum

Digit
mod 10

�

�
�

�

�
� = 0

