CSE 241
Number Systems & Binary Arithmetic

Positional Number Systems
@ aka, Radix-Weighted Positional Number System

@ Consider abase r number system
“"Radix point separates integer & fractional components
“"Finite set of r symbols called digits
&~ Pogition of digit determines weight of digit
@ A positive number, N, can be written in positional notation as:
N=(dv10n2...01do.d1d... dp)y
where
. = radix point
r = radix (base) of number system
n = number of integer digits to the left of the radix point
m = number of fractional digits to the right of the radix point
d = integer digiti, wheren-1=i >0
d = integer digiti, where-1>i>-m
dn-1 = most significant digit
d.m = least significant digit
@ Genera form as a power seriesinr
® Example
®78.52610
&7x 10" +8x10°+5x 101 +2x 10% + 6 x 10°
®°214.03g
L2x8+1x8 +4x8+0x8"+3x8?

Decimal to Binary Conversion
@ Procedure
& Separate the decimal number into two portions, the integer component, i, & the fractional
component, f.
“"First, consider the integer component.
% Choose the largest power of 2, 2", lessthan or equal toi.
ir2"=q,r, bh=0
rn/2”'1 =Q,fn1 bn_]_ =q
/2 =gz bh2=q

ri/2°=q bo=q

& Alternate method for the integer component.
i/b=qor bo=Tr
Qo/b = qu,r b=r

ai/b=qy,r b,=r

% Continue until g=0



%~ Next, let’s consider the fractional component.
fx2= b.1 . f.l
f_]_ X2= b_2 . f.g

fre1X2=bmy.fn
L When f.,, = 0, stop
& Put the integer & fractional results together.
Sbnbny... bibo.baibs ... by

® Example
& Convert 483.75; to binary
U First, consider the integer portion (using the first method)
v 483/256 = 1, 227 bg
v'227/128 =1, 99 by
vo9/64=1,35 be
v35/32=1,3 bs
v3/16=0,3 by
v3/8=0,3 bs
v3/4=0,3 b,
v32=11 by
v11=1,0 bo

% (bs by be bs bs bs b, by b)

& Consider the integer portion using the alternate method
v483/2=241,1 by
v241/2=120,1 b
v120/2=60,0 by
v 60/2=30,0 bs
v30/2=15,0 by
v15/2=7,1 bs

v72=31 be
v32=1,1 by
v12=01 bg

% (bs by be bs bs bs b, by b)
& Next, consider the fractional portion

v0.75x2=15 b4

v05x2=10 b.,
% (b b.o)2

v11,

U Finaly, combine theinteger & fractional portions.
v'111100011.11,



Binary to Decimal Conversion
@® Procedure
TP X M+ Do X 2+ .+ b X P+ by xrt+ by X ™+ b, xr™
® Example
@ Convert 1011.101, to decimal
G(bsbabiby. bibobs),
Gix2+0x22+1x 2 +1x 20 +1x 21 +0x2%+1x23
L8+2+1+.5+.125
%,11.625

Storage Limitations
@ A storage deviceis limited by the number of bitsit can store
@ An n bit storage device can hold 2" possible values

Binary Number System
® Digits
“0,1
@ Radix point
&~ Binary point
® Example
%-11011.101
@ Notation
@20 =K (kilo)
& 2% = M (mega)
= 2% = G (giga)
® Key powers of 2

2| n 2
1|10 1,024

2 || 11 2,048

4 || 12 4,096

8 || 13 8,192

14 16,384

32| 15 32,768

64 || 16 65,536
128| 20 1,048,576
256 30| 1,073,741,824
512

OCO~NOUAWNRERODS
=
o

® Example
“64 M
T 64 x 220 =20 x 220 = 2%
67,108,864



Convenient Number Systems

@ Commonly used number systemsin digital systems
“ Binary
% Base 2
%0, 1
& QOctal
% Base 8
$0,1,2,34,56,7
" Hexadecimal
% Base 16
%0,1,23,4,56,7,89A,B,C,D,E F
% Notation
v 0x
v

Converting from Base A to Base B when B=AX
® Base A to B when B=A* and k is a positive integer

“Group digits of N in groups of k digits proceeding away from the radix point in both
directions

" Replace each group with its equivalent digit in base B.
® Base B to A when B=A* and k is a positive integer

" Replace each base B digit in N with equivalent k digitsin base A.
@ Examples:

" 0xA9 - 10101001,

®-1110100, - Ox74

® 2415 » 10100001,

©-1011101001, - 1351g

Binary Addition

@ Addition Table
+ | o 1
0o |0

@ Using the above table, proceed as with base ten.
® Example
& Consider 1440 + 950 using binary addition

1110
+1001

10111

% Sum = 10111, = 2349



Binary Subtraction
@® Consider M-N
“ M = Minuend
% N = Subtrahend

® Table
Subtrahend
- lo 1
KéEI‘I‘OW
Minuend © 0 1 1
1 1 0

@ Using the above table, proceed as with base ten.
® Example
%~ Consider 3710-113 using binary subtraction

100101
-1011

11010

& Difference = 11010, = 2649

Binary Multiplication
@ Multiplication Table

X ‘ 0 1
o o o
1 o 1

@ Using the above table, proceed as with base ten.
® Example

&= Consider 2210%619 using binary multiplication

10110

x110

00000
10110
+10110
10000100

& Product = 10000100, = 1329



Binary Division
@® Division consists of a series of repeated multiplications & subtractions.
@ Process analogous to base ten division.
® Example
& Consider 21440/550 using binary division

101010

101) 11010110
101

011
000

110
101

011
000

111
101

100
000

100

@~ Quotient = 101010, = 424
& Remainder = 100, = 449

Extending Arithmetic Operationsto Other Bases
@ These operations can be extended to other bases
& Generate tables
& Carry procedure similar to those previously described

@ Often, it iseasier to first convert numbers to decimal, carry out operation, and convert the
result to the desired base.

Signed Numbers
@ Signed numbers are represented using sign-magnitude or complement notation.
@ The most significant bit represents the sign bit, indicating whether the number is positive or
negative.
@ Signed Number Range
@z[_zn—l’ 2n—1 _ 1]
U r’'s complement representation
& [-2"1+1, 2" - 1]
& (r-1)’s complement & sign-magnitude representation
® Unsigned Number Range
&[0, 2" - 1]



Sign-magnitude Representation
@ Consider anumber, N, in baser:
@NI’ = (3n-1, 3n-2, ey al! 30)

® Sign
@%an.l =0ifN,=0 's] Magnitude
F a1 =r-1if N;<0 Sign Bit

@ Magnitude
F 82, &3, -.e, A1, Q0

@ Example

#" Represent 3 as a 16 bit number using sign-magnitude representation
%0000 0000 0000 0011

®~Represent -3 as a 16 bit number using sign-magnitude representation
%1000 0000 0000 0011

Radix Complement

@ aka
#"r’s Complement
“~True Complement

@ Procedure
& Consider anumber, N,, in baser.
G Let
v'n = number of integer digitsin N,
v'm = Number of fractional digits
% For N, =0,
%0
0 This caseis defined sincer" - 0 isan n+1 bit result
0 Result must have n+m bits
& For N,<>0,
Gr"- N,
@ Specific Cases
%~10's complement (base 10)
&= 2's complement (base 2)
@ Radix Complement Examples
&~ Determine the 10's complement of 52520,
%, 10° - 52520 = 47480
& Determine the 2's complement of 101100,
% 1000000, - 101100, = 010100,
@ Simple Algorithm
& Start with the least significant digit & move toward the most significant (right to left)
®"Retain every digit until the first nonzero digit, &, is reached.
%" Replace g with (r- &)
& Replace each remaining digit, g, (if any) with (r-1-g)



@® For 2’'s Complement
& Start at the least significant bit and move toward the most significant bit.
®"Retain al zeros, until thefirst one, &, is reached.
“ Retain g
& Complement al bits, &, more significant than &
® Examples
®~Determine the 10's complement of 496010,¢
%,503990

& Determine the 10's complement of 367.244¢
$,632.76

& Determine the 2's complement of 1101010,
0010110,

Diminished Radix Complement
@ aka
% (r-1)’s Complement
&~ Radix-minus-one Complement

@ Procedure
®~Consider anumber, N, in baser.
G Let
v'n = number of integer digitsin N,
% For N, #0,
Or'-r™- N,

v'n = Number of integer digits
v'm= Number of fractiona digits
- Note that for a number without a fractional component, r'™ =1
@ Specific Cases
#~9's complement (base 10)
#~1's complement (base 2)
@ Examples
& Determine the 9's complement of 52520,
%,10° - 52520 -1
447479
& Determine the 1's complement of 101100,
%, 1000000, - 101100 - 1
$010011,
& Determine the 1's complement of 11010.1011,
& 100000, - 101100, - 0.0001
%,00101.0100;,
@ Simple Algorithm
& Start with the least significant digit & move toward the most significant (right to left)
®"Replace every digit, &, with r-1- g



@® For 1's Complement
®~ Complement every bit

® Examples
# Determine the 9's complement of 49601.83;
$,50398.16
& Determine the 1's complement of 110101,
%,001010;

Notesonr’'s& (r-1)’s Complements

@ Taking the complement of a complement returns the original number

@ (r-1)’ s complement notation & sign-magnitude notation have a positive & negative 0
“"r's complement notation does not

@ Relationship between r's & (r-1)’s complements
& r’'s complement = (r-1)’s complement + 1
% Exception
v 15 00...00 which represents -10", in the r's complement representation

Notes on Signed Numbers

@ Textbook
=~ Negative numbers appended with 1 at MSB position

® Class
" Negative numbers start with r-1 in MSB position

Signed Number Examples

® Examples
&~ Represent the following numbersin 10's complement, 9's complement, and sign-
magnitude representations using 4 digits

%34
v'10's complement = 0034
v'9's complement = 0034
v Sign magnitude = 0034

$,-178
v'10's complement = 10000 - 178 = 9822
v’ 9’scomplement = 10000 - 178 - 1 = 9821
v Sign magnitude = 9178

& Represent the following numbersin 2's complement, 1's complement, and sign-magnitude
representations using 8 bits

U 7210 = (1001000,)
v’ 2's complement = 01001000
v'1's complement = 01001000
v/ Sign magnitude = 01001000

t%-5610 = (1110002)
v’ 2's complement = 11001000
v'1’'scomplement = 11000111
v/ Sign magnitude = 10111000



Sign-Extension
® \When an n digit signed number is represented by n+k bits using complement representation,
the most significant k bits must replicate the sign bit of the n digit number.
® Example
&= Consider the -49
& 8-bit 2's complement representation
v/ 11001111

& Extended to 16-bits
v1111111111001111

U What happens if the sign bit is not properly extended?

Implementation of Addition & Subtraction
@ Most computers use the radix complement number system to perform integer arithmetic.
® \Why?

&~ Amount of circuitry required for these operations is minimized.

“" A binary adder & complementing circuits can handle both addition & subtraction.

Subtraction with r’s Complement
@® Procedure (M-N)
&~ Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
%~ Add minuend, M, to r's complement of subtrahend, N.
“"|f an end carry occurs, discard it.
% Indicates positive result
“"|f not, the result is a negative value represented in r’'s complement notation.

® Example #1
%~ Consider 6719 - 1510 using 10's complement
% 10's complement of 15 =985
v'Note 9 indicates negative
067 + 985 = 1052
% Discard end carry
U Difference = 05249

@ Example #2
®Consider 210 - 891 using 10's complement
% 10's complement of 89 = 911
%021 +911 =932
% No end carry
U Result (932) isin 10's complement notation
% Difference = -6819



@ Example #3
®Consider 81,9 - 4510 using 2's complement

%, 1010001, - 00101101,
& 2's complement of 4550 = 11010011,
%,001010001 + 11010011 = 100100100
% End carry occurs
% Discard end carry
& Difference = 00100100, = 3619

@ Example #4
® Consider 539 - 6010 using 2's complement

$,00110101; - 00111100,
% 2's complement of 60,9 = 11000100,
$,00110101 + 11000100 = 11111001
% No end carry
U Result (11111001,) isin 2's complement notation
% Difference = 11111001, = -719

Subtraction with (r-1)’s Complement

@ Procedure (M-N)
&~ Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
“~ Add minuend, M, to (r-1)’s complement of subtrahend, N.
“|f an end carry occurs, add 1 to the least significant digit.
U Referred to as an end-around carry
% Indicates positive result
“"|f not, the sum is a negative value represented in (r-1)’s complement notation.

® Example #1
%~ Consider 581 - 3710 using 9's complement
% 9's complement of 37 = 962
v'Note 9 indicates negative
%058 + 962 = 1020
% End carry occurs
% Add end carry
% Difference = 214
® Example #2
%~ Consider 1110- 5330 using 9's complement
% 9's complement of 53 = 946
v'Note 9 indicates negative
%011 + 946
% No end carry
U Result (957) isin 9's complement notation
% Difference = - 4249



@ Example #3
® Consider 81,9 - 4510 using 1's complement
% 1's complement of 45 = 110100010,
$,01010001 + 11010010 = 100100011
%End carry occurs
% Add end carry
% Difference = 3649
® Example #4
&= Consider 2510 - 4250 using 1's complement
% 1's complement of 42 = 11010101,
$00011001 + 11010101 = 11101110
% No carry occurs
L Result isin 1's complement notation
G Difference = - 1749

Overflow Conditions
® An overflow occurs when the result of an arithmetic operation falls outside the avail able range
that can be stored.
@ Condition codes in the processor are maintained to determine if an overflow has occurred.
@ Detection of overflow for addition of signed numbers
& Carriesinto & out of MSB (sign bit) differ
“~Two positive numbers added & negative result is obtained
%" Two negative numbers added & a positive result is obtained
@ Note that overflow cannot occur if two number of differing signs are added

Comparison of 1's & 2's Complements
@® 1's complement is easier to implement by digital circuits.
@ 2's complement requires only 1 arithmetic operation to carry out subtraction where 1's
complement requires 2 due to the end-around carry.
@® 1's complement has the disadvantage of 2 zeros.
® Positive 0: 0...0
% Negative0: 1...1

Shifts & Rotates
® [ ogical Shifting S R

" Bits shifted left or right o Logical Shift Right

%" ogica O shiftedin _ _

@"_Shifti ng n pOSiti(_)ns_,Ief.t Logical Shift Left o
implements multiplication by
2n

& Example

% Shift 11010110 logicaly left 3 places
v'Result: 10110000




@ Arithmetic Right Shifting
& MSB shifted in Arithmetic Shift Right
@ Maintains sign bit !
&= Shifting n positions left
implements division by 2"
& Example
% Arithmetic shift 11010110 right 3 places
v'Result: 11111010

¢ R@?;[at.l ng . Rotate Right
Bits rotated left or right =
< Bit(s) rotated out is (are) t
shifted in Rotate L eft -
& Example F f

% Rotate 11010010 left 5 places
v'Result: 01011010

Codes

@ Code Group
®~Unique string of binary digits representing a symbol (character, digit, etc.)
@ Decima Codes
®BCD
% Binary Coded Decimal
®" Represents decimal digits
%0 -9
% Weighted Codes
% Position of 1 indicates weight
8421 Code
% Weighted Code
% Most common BCD code
©=2421 Code
% Self-complementing
v'1's complement of code yields 9's complement of number
v Example
« 9'scomplement of 61is 38
« 1'scomplement of 11000001 is 00111110
#7536 Code
% Weights of 7, 5, 3 are positive
W Weight of 6 is negative
5421 Code
#Biquinary Code
%,5043210 weighted code
% Two of seven bitsare 1
v First Linfirst two bits
v Second 1in last 5 bits



& Excess-three Code
% aka, XS-3 code
% Nonweighted BCD
% 3 is added to each 8421 code group
% Self-complementing
% Example
VT4
- 0111 + 0011 =1010
« 0100 + 0011 =0111
+ XS-3codeis 10100111
& 2-out-of-5 Code
% Nonweighted code
% Exactly 2 of 5 bitsare 1
% Error detecting

@ Unit-Distance Codes
%~ Only asingle bit changes between any two successive coded integers

& Example
% Gray Code
Decima Gray
Number Code
0 0000
1 0001
2 0011
3 0010
4 0110
5 0111
6 0101
7 0100
8 1100
9 1101
10 1111
11 1110
12 1010
13 1011
14 1001
15 1000

@ Alphanumeric Codes
& Uppercase/Lowercase letters of alphabet
“ Digits (0 - 9)
&~ Punctuation
& Control Operations
% Backspace
% Form Feed
% Carriage Return
% Escape
G ...



%" Specia Characters
LE#r@=+[]*-..)
&~ American Standard Code for Information Interchange
L aka, ASCII
% 7-bit
% Examples
v'd=1100100
v 9=0111001
v'R=1010010
v* = 0101010
&~ Unicode
L 16-bit
% International
v English as well as many other languages
v'Punctuation marks
v'Mathematical Symbols
v Technical Symbols
v Geometric Shapes
v' Dingbats
@ Error Detection
%" A codeis said to be n-error detecting if the minimum of n errors that cannot be detected is
n+1
L Error defined as a bit being complemented erroneously
& Example
% 2-out-of-5 codes
v Single error detecting
v Example
« A 01010 transmitted as 01110
« Error can be detected
% Parity
v A parity bit can be concatenated to a code word that does not incorporate error
detection to make it asingle error detecting code
« Detects an odd number of errors
v Even Parity

+ The code word (including the parity bit) has an even number of 1's
v Odd Parity

+ The code word (including the parity bit) has an odd number of 1's
v Example

« The 7-bit ASCII code is often concatenated with a parity bit
+ H (odd parity) = 11001000
& Distance between two code groups

% The number of bits that must change so that the first code group becomes the second
% Minimum Distance

& Minimum distance between any two valid code groups in a coding scheme



% Maximum number of detectable errors
LD=M-1
v'D = error detecting capability of code
v'M = minimum distance
® Error Correction
% |t is possible to construct a code whereby a finite number of errors can be corrected
LC+D=M-1whereC<D
v'C = Number of erroneous bits that can be corrected
v'D = Number of errors that can be detected
v'M = Minimum distance of code
@® Error Detection vs. Error Correction
%~ Consider a 6-bit code group used to represent 8 unique codes
%" Graphical Representation
U First six bits are along the x-axis, last six bits are along the y-axis
11 ‘ ‘ _—
110 ® - - -
01 B -
100 NGRS . SESEN . |
o e

000 001 010 011 100 101 110 111

% |s the codegroup error detecting, error correcting, both, or neither?

®~Code B is changed from 010010 to 011011. Does this change whether it is error detecting
or correcting? If so, how?

111
10 - Fe . ... LG .
100 [ Do JSEGEN .
011

010 -

00  © e
000 001 010 011 100 101 110 111



@® Error Correction
®"Hamming Code

% Derived by R.W. Hamming

% Consider the case of four information bits
v Three parity bits are included

« Each calculated over a specified set of bits

v Let p; represent parity bit i
v Let b represent parity information bit i

716541321 Position

b4 b3 b2 P, b1 P, P; Code Group Format

v p1 = Even parity over positions 1, 3,5, 7
v p2 = Even parity over positions 2, 3, 6, 7
v ps = Even parity over positions 4, 5, 6, 7
% Example
v'Code word to be coded
- 1101
v'We need to determine py, P2, P3
« 1101
v'Hamming Code
- 1100110
U To detect/correct asingle error, abinary check number is created
Voo
v'C; isp; recalcul ated
v' The binary check number determines the position of the bit that must be
complemented to obtain the error free code word
« If the binary check number is zero, the code received is error free
v Example
« A 1101110 isreceived
«C3Cc; =100
« Complement the 4" (100,) bit to correct the code word (1100110)
% The Hamming Code can be generalized to any number of bits
v'm = number of information bits
v'k = number of parity bits
vms<26-k-1
v mtk bits are required for code word
v'Let us number positions from right to left starting with 1 and ending at m+k
v Parity bit, p;, in position 2, considers every other group of 2' bits beginning with the
parity bit in position 2
v Binary check number ¢, ... c; determines the position that must be complemented
to determine the correct code



@® Single Error Correction & Double Error Detection
& Append a parity bit to the entire code group and implement even parity
% Not used in calculation of other parity bit calculations
& Interpreting a Code Word
% Casel
v ...cy =0...0and additional parity bit is correct
« No single or double errors
% Case 2
v ...c1 #0...0and additional parity bit isincorrect
- Single error, corrected by complementing bit in position ¢ ... ¢’
% Case 3
v ...c1 #0...0and additional parity bit is correct
« Two errors, not correctable
@ Check Sum Digits for Error Correction
@ Consider 5 + 4 ZIP Codes
& 2-out-of -5 code is used to encode each digit
% A checksum digit is appended to ZIP code so that sum is amultiple of 10

vIf asingledigitisin error (number of 1's # 2) the checksum can be used to correct
check digit

( ZIP Digit Check Sum) 0
+ =
Sum Digit J

References

® M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals, Prentice
Hall, Inc., 2000

@® Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, Digital Logic Circuit
Analysis and Design, Prentice Hall, Inc., 1995

@® Donald D. Givone, Digital Principles and Design, McGraw-Hill, 2003



