
CSE 241
Number Systems & Binary Arithmetic

Positional Number Systems
� aka, Radix-Weighted Positional Number System

� Consider a base r number system
� Radix point separates integer & fractional components
� Finite set of r symbols called digits
� Position of digit determines weight of digit

� A positive number, N, can be written in positional notation as:
N = (dn-1 dn-2 … d1 d0 . d-1 d-2 … d-m)r

where
. = radix point
r = radix (base) of number system
n = number of integer digits to the left of the radix point
m = number of fractional digits to the right of the radix point
di = integer digit i, where n-1 ≥ i ≥ 0
di = integer digit i, where -1 ≥ i ≥ -m
dn-1 = most significant digit
d-m = least significant digit

� General form as a power series in r

� Example
� 78.52610

� 7 x 101 + 8 x 100 + 5 x 10-1 + 2 x 10-2 + 6 x 10-3

� 214.038

� 2 x 82 + 1 x 81 + 4 x 80 + 0 x 8-1 + 3 x 8-2

Decimal to Binary Conversion
� Procedure

� Separate the decimal number into two portions, the integer component, i, & the fractional
component, f.

� First, consider the integer component.
� Choose the largest power of 2, 2n, less than or equal to i.

i/2n = q,rn     bn = q
rn/2

n-1 = q,rn-1     bn-1 = q     
rn-1/2

n-2 = q,rn-2     bn-2 = q
         . . .     . . .
r1/2

0 = q     b0 = q
� Alternate method for the integer component.

i/b = q0,r  b0 = r
q0/b = q1,r b1 = r     
q1/b = q2,r   b2 = r

. . .     . . .
� Continue until q=0



� Next, let’s consider the fractional component.
f x 2 = b-1 . f-1

f-1 x 2 = b-2 . f-2

        . . .
f-m+1 x 2 = b-m . f-m

� When f-m = 0, stop
� Put the integer & fractional results together.

� bn bn-1 … b1 b0 . b-1 b-2 … b-m

� Example
� Convert 483.7510 to binary

� First, consider the integer portion (using the first method)
� 483/256 = 1, 227 b8

� 227/128 = 1, 99 b7

� 99/64 = 1, 35 b6

� 35/32 = 1, 3 b5

� 3/16 = 0, 3 b4

� 3/8 = 0, 3 b3

� 3/4 = 0, 3 b2

� 3/2 = 1, 1 b1

� 1/1 = 1, 0 b0

� (b8 b7 b6 b5 b4 b3 b2 b1 b0)2

� Consider the integer portion using the alternate method
� 483/2 = 241, 1 b0

� 241/2 = 120, 1 b1

� 120/2 = 60, 0 b2

� 60/2 = 30,0 b3

� 30/2 = 15,0 b4

� 15/2 = 7, 1 b5

� 7/2 = 3, 1 b6

� 3/2 = 1, 1 b7

� 1/2 = 0, 1 b8

� (b8 b7 b6 b5 b4 b3 b2 b1 b0)2

� Next, consider the fractional portion
� 0.75 x 2 = 1.5 b-1

� 0.5 x 2 = 1.0 b-2

� (b-1 b-2)2

� 112

� Finally, combine the integer & fractional portions.
� 111100011.112



Binary to Decimal Conversion
� Procedure

� bn-1 x rn-1 + bn-2 x rn-2 + … + b0 x r0 + b-1 x r-1 + b-m+1 x r-m+1 + b-m x r-m

� Example
� Convert 1011.1012 to decimal

� ( b3 b2 b1 b0 . b-1 b-2 b-3 )2

� 1 x 23 + 0 x 22 + 1 x 21 +1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3

� 8 + 2 + 1 + .5 + .125
� 11.62510

Storage L imitations
� A storage device is limited by the number of bits it can store

� An n bit storage device can hold 2n possible values

Binary Number System
� Digits

� 0,1

� Radix point
� Binary point

� Example
� 11011.101

� Notation
� 210 ≡ K (kilo)
� 220 ≡ M (mega)
� 230 ≡ G (giga)

� Key powers of 2

� Example
� 64 M
� 64 x 220 = 26 x 220 = 226

� 67,108,864

n n
n n

2 2
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1,024
11 2,048
12 4,096
13 8,192
14 16,384
15 32,768
16 65,536
20 1,048,576
30 1,073,741,824



Convenient Number Systems
� Commonly used number systems in digital systems

� Binary
� Base 2
� 0, 1

� Octal
� Base 8
� 0, 1, 2, 3, 4, 5, 6, 7

� Hexadecimal
� Base 16
� 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
� Notation

� 0x
� $

Converting from Base A to Base B when B=Ak

� Base A to B when B=Ak and k is a positive integer
� Group digits of N in groups of k digits proceeding away from the radix point in both

directions
� Replace each group with its equivalent digit in base B.

� Base B to A when B=Ak and k is a positive integer
� Replace each base B digit in N with equivalent k digits in base A.

� Examples:
� 0xA9 → 101010012

� 11101002  → 0x74
� 2418 →  101000012

� 10111010012 → 13518

Binary Addition
� Addition Table

� Using the above table, proceed as with base ten.

� Example
� Consider 1410 + 910 using binary addition

� Sum = 101112 = 2310

0

1

0

1

1

0

+ 0 1

Carry
1

1 1 1 0
+ 1 0 0 1

1 0 1 1 1

1



Binary Subtraction
� Consider M-N

� M � Minuend
� N � Subtrahend

� Table

� Using the above table, proceed as with base ten.

� Example
� Consider 3710-1110 using binary subtraction

� Difference = 110102 = 2610

Binary Multiplication
� Multiplication Table

� Using the above table, proceed as with base ten.

� Example
� Consider 2210×610 using binary multiplication

� Product = 100001002 = 13210

0
1

0
1

1
0

- 0 1
Subtrahend

Minuend
Borrow

1

1 0 0 1 0 1
- 1 0 1 1

1 1 0 1 0

111 0

0
1

0
0

0
1

x 0 1

1 0 1 1 0
 1 1 0x

0 0 0 0 0
  

1 0 0 0 0 1 0 0
  

1 0 1 1 0
   +1 0 1 1 0

  



Binary Division
� Division consists of a series of repeated multiplications & subtractions.

� Process analogous to base ten division.

� Example
� Consider 21410/510 using binary division

� Quotient = 1010102 = 4210

� Remainder = 1002 = 410

Extending Ar ithmetic Operations to Other  Bases
� These operations can be extended to other bases

� Generate tables
� Carry procedure similar to those previously described

� Often, it is easier to first convert numbers to decimal, carry out operation, and convert the
result to the desired base.

Signed Numbers
� Signed numbers are represented using sign-magnitude or complement notation.

� The most significant bit represents the sign bit, indicating whether the number is positive or
negative.

� Signed Number Range
� [-2n-1, 2n-1 - 1]

� r’s complement representation
� [-2n-1+1, 2n-1 - 1]

� (r-1)’s complement & sign-magnitude representation

� Unsigned Number Range
� [0, 2n - 1]

11010110

101010

101
101

101

101

000

000
100

000

011
  

011
  

100
  

110
  

111
  



Sign-magnitude Representation
� Consider a number, N, in base r:

� Nr = (an-1, an-2, … , a1, a0)

� Sign
� an-1 = 0 if Nr ≥ 0
� an-1 = r-1 if Nr ≤ 0

� Magnitude
� an-2, an-3, …, a1, a0

� Example
� Represent 3 as a 16 bit number using sign-magnitude representation

� 0000   0000   0000   0011
� Represent -3 as a 16 bit number using sign-magnitude representation

� 1000   0000   0000   0011

Radix Complement
� aka

� r’s Complement
� True Complement

� Procedure
� Consider a number, Nr, in base r.

� Let
� n ≡ number of integer digits in Nr

� m ≡ Number of fractional digits
� For Nr = 0,

� 0
☞ This case is defined since rn - 0 is an n+1 bit result

✓  Result must have n+m bits
� For Nr<>0,

� rn - Nr

� Specific Cases
� 10's complement (base 10)
� 2's complement (base 2)

� Radix Complement Examples
� Determine the 10's complement of 5252010

� 105 - 52520 = 47480
� Determine the 2’s complement of 1011002

� 10000002 - 1011002 = 0101002

� Simple Algorithm
� Start with the least significant digit & move toward the most significant (right to left)
� Retain every digit until the first nonzero digit, ai, is reached.
� Replace ai with (r- ai)
� Replace each remaining digit, aj, (if any) with (r-1-aj)

S

Sign Bit

Magnitude



� For 2’s Complement
� Start at the least significant bit and move toward the most significant bit.
� Retain all zeros, until the first one, ai, is reached.
� Retain ai

� Complement all bits, aj, more significant than ai

� Examples
� Determine the 10's complement of 49601010

� 503990
� Determine the 10's complement of 367.2410

� 632.76
� Determine the 2's complement of 11010102

� 00101102

Diminished Radix Complement
� aka

� (r-1)’s Complement
� Radix-minus-one Complement

� Procedure
� Consider a number, Nr, in base r.

� Let
� n ≡ number of integer digits in Nr

� For Nr �0,
� rn - r-m - Nr

� n ≡ Number of integer digits
� m ≡ Number of fractional digits

• Note that for a number without a fractional component, r-m = 1

� Specific Cases
� 9's complement (base 10)
� 1's complement (base 2)

� Examples
� Determine the 9's complement of 5252010

� 105 - 52520 -1
� 47479

� Determine the 1's complement of 1011002

� 10000002 - 1011002 - 1
� 0100112

� Determine the 1's complement of 11010.10112

� 1000002 - 1011002 - 0.0001
� 00101.01002

� Simple Algorithm
� Start with the least significant digit & move toward the most significant (right to left)
� Replace every digit, ai, with r-1- ai



� For 1’s Complement
� Complement every bit

� Examples
� Determine the 9's complement of 49601.8310

� 50398.16
� Determine the 1’s complement of 1101012

� 0010102

Notes on r ’s &  (r -1)’s Complements
� Taking the complement of a complement returns the original number

� (r-1)’s complement notation & sign-magnitude notation have a positive & negative 0
� r’s complement notation does not

� Relationship between r’s & (r-1)’s complements
� r’s complement = (r-1)’s complement + 1

� Exception
� 1s 00…00 which represents -10n

r in the r’s complement representation

Notes on Signed Numbers
� Textbook

� Negative numbers appended with 1 at MSB position

� Class
� Negative numbers start with r-1 in MSB position

Signed Number Examples
� Examples

� Represent the following numbers in 10’s complement, 9’s complement, and sign-
magnitude representations using 4 digits
� 34

� 10’s complement = 0034
� 9’s complement = 0034
� Sign magnitude = 0034

� -178
� 10’s complement = 10000 - 178 = 9822
� 9’s complement = 10000 - 178 - 1 = 9821
� Sign magnitude = 9178

� Represent the following numbers in 2’s complement, 1’s complement, and sign-magnitude
representations using 8 bits
� 7210 = (10010002)

� 2’s complement = 01001000
� 1’s complement = 01001000
� Sign magnitude = 01001000

� -5610 = (1110002)
� 2’s complement = 11001000
� 1’s complement = 11000111
� Sign magnitude = 10111000



Sign-Extension
� When an n digit signed number is represented by n+k bits using complement representation,

the most significant k bits must replicate the sign bit of the n digit number.

� Example
� Consider the -49

� 8-bit 2’s complement representation
� 11001111

� Extended to 16-bits
� 1111111111001111

� What happens if the sign bit  is not properly extended?

Implementation of Addition &  Subtraction
� Most computers use the radix complement number system to perform integer arithmetic.

� Why?
� Amount of circuitry required for these operations is minimized.
� A binary adder & complementing circuits can handle both addition & subtraction.

Subtraction with r ’s Complement
� Procedure (M-N)

� Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
� Add minuend, M, to r’s complement of subtrahend, N.
� If an end carry occurs, discard it.

� Indicates positive result
� If not, the result is a negative value represented in r’s complement notation.

� Example #1
� Consider 6710 - 1510 using 10's complement

� 10's complement of 15 = 985
� Note 9 indicates negative

� 067 + 985 = 1052
� Discard end carry
� Difference = 05210

� Example #2
� Consider 2110 - 8910 using 10's complement

� 10's complement of 89 = 911
� 021 + 911 = 932
� No end carry
� Result (932) is in 10's complement notation
� Difference = -6810    



� Example #3
� Consider 8110 - 4510 using 2's complement

� 10100012 - 001011012

� 2's complement of 4510 = 110100112

� 001010001 + 11010011 = 100100100
� End carry occurs
� Discard end carry
� Difference = 001001002 = 3610

� Example #4
� Consider 5310 - 6010 using 2's complement

� 001101012 - 001111002

� 2's complement of 6010 = 110001002

� 00110101 + 11000100 = 11111001
� No end carry
� Result (111110012) is in 2's complement notation
� Difference = 111110012 = -710

Subtraction with (r -1)’s Complement
� Procedure (M-N)

� Express minuend, M, and subtrahend, N, with same number of integer and fractional digits
� Add minuend, M, to (r-1)’s complement of subtrahend, N.
� If an end carry occurs, add 1 to the least significant digit.

� Referred to as an end-around carry
� Indicates positive result

� If not, the sum is a negative value represented in (r-1)’s complement notation.

� Example #1
� Consider 5810 - 3710 using 9's complement

� 9's complement of 37 = 962
� Note 9 indicates negative

� 058 + 962 = 1020
� End carry occurs
� Add end carry
� Difference = 2110

� Example #2
� Consider 1110- 5310 using 9's complement

� 9's complement of 53 = 946
� Note 9 indicates negative

� 011 + 946
� No end carry
� Result (957) is in 9’s complement notation
� Difference = - 4210



� Example #3
� Consider 8110 - 4510 using 1's complement

� 1's complement of 45 = 1101000102

� 01010001 + 11010010 = 100100011
� End carry occurs
� Add end carry
� Difference = 3610

� Example #4
� Consider 2510 - 4210 using 1's complement

� 1's complement of 42 = 110101012

� 00011001 + 11010101 = 11101110
� No carry occurs
� Result is in 1’s complement notation
� Difference = - 1710

Overflow Conditions
� An overflow occurs when the result of an arithmetic operation falls outside the available range

that can be stored.

� Condition codes in the processor are maintained to determine if an overflow has occurred.

� Detection of overflow for addition of signed numbers
� Carries into & out of MSB (sign bit) differ
� Two positive numbers added & negative result is obtained
� Two negative numbers added & a positive result is obtained

� Note that overflow cannot occur if two number of differing signs are added

Compar ison of 1's &  2's Complements
� 1's complement is easier to implement by digital circuits.

� 2's complement requires only 1 arithmetic operation to carry out subtraction where 1's
complement requires 2 due to the end-around carry.

� 1's complement has the disadvantage of 2 zeros.
� Positive 0:   0...0
� Negative 0: 1...1

Shifts &  Rotates
� Logical Shifting

� Bits shifted left or right
� Logical 0 shifted in
� Shifting n positions left

implements multiplication by
2n

� Example
� Shift 11010110 logically left 3 places

� Result:  10110000

0 x

0x

Logical Shift Right

Logical Shift Left



� Arithmetic Right Shifting
� MSB shifted in
� Maintains sign bit
� Shifting n positions left

implements division by 2n

� Example
� Arithmetic shift 11010110 right 3 places

� Result:  11111010

� Rotating
� Bits rotated left or right
� Bit(s) rotated out is (are)

shifted in
� Example

� Rotate 11010010 left 5 places
� Result:  01011010

Codes
� Code Group

� Unique string of binary digits representing a symbol (character, digit, etc.)

� Decimal Codes
� BCD

� Binary Coded Decimal
� Represents decimal digits

� 0 → 9
� Weighted Codes

� Position of 1 indicates weight
� 8421 Code

� Weighted Code
� Most common BCD code

� 2421 Code
� Self-complementing

� 1’s complement of code yields 9’s complement of number
� Example

• 9’s complement of 61 is 38
• 1’s complement of 11000001 is 00111110

� 7536 Code
� Weights of 7, 5, 3 are positive
� Weight of 6 is negative

� 5421 Code
� Biquinary Code

� 5043210 weighted code
� Two of seven bits are 1

� First 1 in first two bits
� Second 1 in last 5 bits

y x
Arithmetic Shift Right

x

x

Rotate Right

Rotate Left



� Excess-three Code
� aka, XS-3 code
� Nonweighted BCD
� 3 is added to each 8421 code group
� Self-complementing
� Example

� 74
• 0111 + 0011 = 1010
• 0100 + 0011 = 0111
• XS-3 code is 10100111

� 2-out-of-5 Code
� Nonweighted code
� Exactly 2 of 5 bits are 1
� Error detecting

� Unit-Distance Codes
� Only a single bit changes between any two successive coded integers
� Example

� Gray Code
    Decimal Gray

Number Code
     0 0000
     1 0001
     2 0011
     3 0010
     4 0110
     5 0111
     6 0101
     7 0100
     8 1100
     9 1101
     10 1111
     11 1110
     12 1010
     13 1011
     14 1001
     15 1000

� Alphanumeric Codes
� Uppercase/Lowercase letters of alphabet
� Digits (0 → 9)
� Punctuation
� Control Operations

� Backspace
� Form Feed
� Carriage Return
� Escape
� …



� Special Characters
� ($ # @ = + [ ] *  - …)

� American Standard Code for Information Interchange
� aka, ASCII
� 7-bit
� Examples

� d ≡ 1100100
� 9 ≡ 0111001
� R ≡ 1010010
� *  ≡  0101010

� Unicode
� 16-bit
� International

� English as well as many other languages
� Punctuation marks
� Mathematical Symbols
� Technical Symbols
� Geometric Shapes
� Dingbats

� Error Detection
� A code is said to be n-error detecting if the minimum of n errors that cannot be detected is

n+1
� Error defined as a bit being complemented erroneously

� Example
� 2-out-of-5 codes

� Single error detecting
� Example

• A 01010 transmitted as 01110
• Error can be detected

� Parity
� A parity bit can be concatenated to a code word that does not incorporate error

detection to make it a single error detecting code
• Detects an odd number of errors

� Even Parity
• The code word (including the parity bit) has an even number of 1’s

� Odd Parity
• The code word (including the parity bit) has an odd number of 1’s

� Example
• The 7-bit ASCII code is often concatenated with a parity bit
• H (odd parity) ≡ 11001000

� Distance between two code groups
� The number of bits that must change so that the first code group becomes the second

� Minimum Distance
� Minimum distance between any two valid code groups in a coding scheme



� Maximum number of detectable errors
� D = M - 1

� D ≡ error detecting capability of code
� M ≡ minimum distance

� Error Correction
� It is possible to construct a code whereby a finite number of errors can be corrected

� C + D = M - 1 where C ≤ D
� C ≡ Number of erroneous bits that can be corrected
� D ≡ Number of errors that can be detected
� M ≡ Minimum distance of code

� Error Detection vs. Error Correction
� Consider a 6-bit code group used to represent 8 unique codes
� Graphical Representation

� First six bits are along the x-axis, last six bits are along the y-axis

� Is the codegroup error detecting, error correcting, both, or neither?

� Code B is changed from 010010 to 011011.  Does this change whether it is error detecting
or correcting?  If so, how?
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� Error Correction
� Hamming Code

� Derived by R.W. Hamming
� Consider the case of four information bits

� Three parity bits are included
• Each calculated over a specified set of bits

� Let pi represent parity bit i
� Let bi represent parity information bit i      

� p1 ≡ Even parity over positions 1, 3, 5, 7
� p2 ≡ Even parity over positions 2, 3, 6, 7
� p3 ≡ Even parity over positions 4, 5, 6, 7

� Example
� Code word to be coded

• 1101
� We need to determine p1, p2, p3

• 110_1_ _
� Hamming Code

• 1100110
� To detect/correct a single error, a binary check number is created

� c3
*c2

*c1
*

� ci is pi recalculated
� The binary check number determines the position of the bit that must be

complemented to obtain the error free code word
• If the binary check number is zero, the code received is error free

� Example
• A 1101110 is received
• c3

*c2
*c1

*  = 100
• Complement the 4th (1002) bit to correct the code word (1100110)

� The Hamming Code can be generalized to any number of bits
� m ≡ number of information bits
� k ≡ number of parity bits
� m ≤ 2k - k - 1
� m+k bits are required for code word
� Let us number positions from right to left starting with 1 and ending at m+k
� Parity bit, pi, in position 2i, considers every other group of 2i bits beginning with the

parity bit in position 2i

� Binary check number ck
* … c1

* determines the position that must be complemented
to determine the correct code

1 Position47 25 36

p Code Group Formatpb pb bb
134 22 13



� Single Error Correction & Double Error Detection
� Append a parity bit to the entire code group and implement even parity

� Not used in calculation of other parity bit calculations
� Interpreting a Code Word

� Case 1
� ck

* … c1
* = 0…0 and additional parity bit is correct

• No single or double errors
� Case 2

� ck
* … c1

* ≠ 0…0 and additional parity bit is incorrect
• Single error, corrected by complementing bit in position ck

* … c1
*

� Case 3
� ck

* … c1
* ≠ 0…0 and additional parity bit is correct

• Two errors, not correctable

� Check Sum Digits for Error Correction
� Consider 5 + 4 ZIP Codes

� 2-out-of-5 code is used to encode each digit
� A checksum digit is appended to ZIP code so that sum is a multiple of 10

� If a single digit is in error (number of 1’s ≠ 2) the checksum can be used to correct
check digit
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