
CSE 241
Boolean Algebra

Boolean Algebra
�

 An algebra for symbolically representing problems in logic & analyzing them mathematically
�

 Based on work of George Boole
�

 An Investigation of the Laws of Thought
�

 Published in 1854
�

 Switching Circuit Theory
�

 Forms foundation for digital systems
�

 Boolean algebra applied to logic design
�

 Uses�
 Describe terminal properties of a logic network�
 Verification�
 Manipulation�
 Simplification

�
 Mathematical system consisting of

�
 Set of elements, B

�
 B∈(0,1)

�
 Binary Operators�

 +�
 •

�
 Equality Sign (=)

�
 Parenthesis ()�

 Order of operations
�

 More Definitions
�

 Constant
�

 An element ∈ B�
 0, 1

�
 Variable�

 Symbol representing an arbitrary element
�

 Principle of Duality
�

 If an expression in Boolean algebra is valid, the dual of the expression must also be valid.
�

 To obtain the dual of an expression:�
 Replace every operator + with •

�
 Replace every operator • with +�
 Replace every 1 with 0�
 Replace every 0 with 1

�
 Order of Precedence

�
 Parenthesis, Not, •, +



�
 Notational Notes

�
 The (•) operator is often omitted from an expression�

 The juxtaposition of two variables implies the (•) operator.
�

 The complement (x’ ) is often written with a bar (_) over the variable or expression to be
complemented.

Theorems & Postulates
�

 Operations (+) and (•) are closed
�

 x + y ∈B
�

 x • y ∈B
�

 There exist at least two elements
�

 x, y ∈B
�

 x ≠ y
�

 Complement
�

 x + x’  = 1�
 Dual:  x • x’  = 0

�
 Unary Operator

�
 Identity Elements

�
 Identity elements exist, such that for every element x ∈B�

 0 + x = x + 0 = x
�

 Dual:  x • 1 = 1 • x = x
�

 Complements of Identity Elements
�

 0’  = 1�
 Dual: 1’  = 0

�
 Idempotent Law

�
 x + x = x�

 Dual:  x • x = x
�

 Involution Law
�

 (x’ )’  = x
�

 Absorption Law
�

 x + xy = x�
 Dual:  x(x + y) = x

�
 Theorem

�
 x + x’y = x + y�

 Dual:  x(x’  + y) = xy
�

 Commutative Law
�

 x + y = y + x�
 Dual:  x • y = y • x

�
 Associative Law

�
 x + (y + z) = (x + y) + z�

 Dual:  x (yz) = (xy) z



�
 Distributive Law

�
 x (y + z) = (xy) + (xz)�

 Dual:  x + (yz) = (x + y)(x + z)
�

 DeMorgan’s Law
�

 (x + y)’  = x’y’�
 Dual: (xy)’  = x’  + y’

�
 Extension to more variables�

 (w + x + y + z + ...)’  = w’x’y’z’ ...
�

 Dual:  (wxyz)’ ... = w’  + x’  + y’  + z’  ...
�

 Consensus Theorem
�

 xy + x’z + yz = xy + x’z�
 Dual:  (x + y)(x’  + z)(y + z) = (x + y)(x’  + z)

Complementing a Function
�

 To complement a function, either
�

 apply DeMorgan’s Theorem
�

 take dual of function and complement each literal

The Truth Table
�

 A table listing the output for every possible combination of inputs for an n-input function
�

 Inputs
�

 Enumerated on left
�

 Count from 0…0 to 1…1 in binary to enumerate all values
�

 Outputs
�

 Enumerated on right
�

 Columns
�

 n + 1 (minimum)
�

 Often intermediate values are listed instead of just the output of the function
�

 Rows
�

 2n

Two-Valued Boolean Algebra
�

 A Boolean algebra where B = { 0,1} , and operators • and +
�

 AND (•)
�

 Alternate Symbols
�

 ∩
�

 ∧

�
 OR (+)

�
 Alternate Symbols

�
 ∪

�
 ∨
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Terminology
�

 Negation
�

 Not Operation
�

 Product
�

 AND Operation
�

 Sum
�

 OR Operation
�

 Literal
�

 Each occurrence of a variable in its complemented or uncomplemented form
�

 Product Term
�

 Literal
�

 Product (conjunction) of literals
�

 Sum Terms
�

 Literal
�

 Sum (disjunction) of literals
�

 Boolean Formula or Expression
�

 Boolean variables & constants are connected with operators to describe a particular
function

Boolean Formula Manipulation
�

 Complementing a Function
�

 Expanding About a Variable
�  f(x1,…,xi,…,xn) = xi f(x1…, 1, …, xn) + xi’  f(x1, …, 0, …, xn)
�  f(x1,…,xi,…,xn) = [xi + f(x1…, 0, …, xn)] [xi’  + f(x1, …, 1, …, xn)

�
 Equation Simplification

�
 Reduction of the number of literals

�
 Reduction Theorems

�
 xi f(x1,…,xi,…,xn) = xi f(x1…, 1, …, xn)

�
 xi + f(x1,…,xi,…,xn) = xi + f(x1…, 0, …, xn)

�
 xi’  f(x1,…,xi,…,xn) = xi’  f(x1…, 0, …, xn)

�
 xi’  + f(x1,…,xi,…,xn) = xi’  + f(x1…, 1, …, xn)

Examples
�

 Determine the dual of F = xy + z
�

 (x + y)z

�
 Determine F’ , where F = (x + y’ )z + y

�
 F’  = (x’y + z’ ) y’



�
 Simplify:  F = x’yz’  + xyz’  + xyz + xyz’

�
 F = yz’  + xy

�
 Simplify:  F = x’y’z + x’yz + xy’z + xyz

�
 F = z

�
 Simplify: F = w’x’z’  + xy’z + wxy’z’  + w’xy’z + x’z’

�
 F = x’z’  + xy’z + wxy’

�
 F = x’z’  + xy’z + wy’z’



�
 Simplify: F = y’z’  + x’yz + x’y + xyz + xz’

�
 F = y + z’



Canonical Forms
�

 The standard form of an equation consists of product or sum terms
�

 Referred to as the canonical form
�

 Two forms
�

 POS
�

 SOP

Two Canonical Forms
�

 SOP & POS Forms
�

 Sum of Products (SOP)�
 Formed by summing products terms

�
 Each product formed by ANDing literals�

 Example
�

 f(a,b,c,d) = a’b + ac’ + abcd
�

 Product of Sums (POS)�
 Formed by taking the product of sum terms

�
 Each sum formed by ORing literals�

 Example
�

 f(a,b,c,d) = (a+b) (b+c+d’) (a+b’+c’ )
�

 Note�
 A sum is formed by using the OR operator�
 A product is formed by using the AND operator

Canonical Sum of Products
�

 aka
�

 Canonical SOP
�

 Standard SOP
�

 Disjunctive Normal Form
�

 Disjunctive Canonical Formula
�

 Minterm Expansion
�

 Minterm Canonical Formula
�

 Minterm
�

 An product of literals in which each variable is represented once and only once in either its
complemented or uncomplemented form.

�
 Minterms are ORed to form the canonical SOP

�
 Shorthand Notation

�
 Each minterm is represented by an n-bit binary code as follows�

 Let an uncomplented variable represent 1�
 Let a complemented variable represent 0

�
 Each minterm is represented by mi�

 where i is the decimal integer equivalent of the binary code representing the minterm
�

 If the minterm, mi , evaluates to 1, the minterm is included in the expression
�

 Hence, the function, f(a,b,c) = �  mi�
 where mi is a minterm that evaluates to 1



�
 Example�

 Consider f(a,b,c) = a’bc’  + a’bc + ab’c�
 Truth Table

a b c f(a,b,c)Minterm
0 0 0      0       0
0 0 1      0       1
0 1 0      1         2
0 1 1      1       3
1 0 0      0       4
1 0 1       1       5
1 1 0      0       6
1 1 1      0       7�

 f(a,b,c) = �  m(2,3,5) = m2 + m3 + m5�
 f’ (a,b,c) = �  m(0,1,4,6,7) = m0 + m1 + m4 + m6+ m7

�
 Minterm list form�

 The shorthand notation represented above as
f(a,b,c) = �  m(2,3,5)

Canonical Product of Sums
�

 aka
�

 Canonical POS
�

 Standard POS
�

 Conjunctive Normal Form
�

 Conjunctive Canonical Formula
�

 Maxterm Expansion
�

 Maxterm Canonical Formula
�

 Maxterm
�

 An sum of literals in which each variable is represented once and only once in either its
complemented or uncomplemented form.

�
 Maxterms are ANDed to form the canonical POS

�
 Shorthand Notation

�
 Each maxterm is represented by an n-bit binary code as follows�

 Let an uncomplemented variable represent 0�
 Let a complemented variable represent 1

�
 Each maxterm is represented by Mi�

 where i is the decimal integer equivalent of the binary code representing the maxterm
�

 If the maxterm, Mi , evaluates to 0, the maxterm is included in the expression
�

 Hence, the function, f(a,b,c) = �  Mi�
 where Mi is a maxterm that evaluates to 0

�
 Example�

 Consider f(a,b,c) = (a+b+c) (a+b’+c) (a’+b+c) (a’+b’+c’ )�
 Truth Table

a b c f(a,b,c)Maxterm
0 0 0      0       0



0 0 1      1       1
0 1 0      0         2
0 1 1      1       3
1 0 0      0       4
1 0 1       1       5
1 1 0      1       6
1 1 1      0       7�

 f(a,b,c) =  �   M(0,2,4,7) = M0 M2 M4  M7�
 f’ (a,b,c) = �   M(1,3,5,6) = M1 M3 M5 M6

�
 Maxterm list form�

 The shorthand notation represented above as
f(a,b,c) = �   M(0,2,4,7)

Derivation of Minterm & Maxterm
�

 Minterm
�

 The function not equal to 0 with a minimum number of 1’s in the truth table
�

 Maxterm
�

 The function not equal to 1 with a minimum number of 0’s in the truth table
�

 Note
�

 For a function, F, M j=mj’

Summary
�

 2n minterms (maxterms) exist for n Boolean variables
�

 These minterms (maxterms) can be represented by the binary numbers 0 through 2n-1
�

 Any Boolean function can be represented as a logical sum (product) of minterms (maxterms)
�

 The complement of a function, F’ , consists of those minterms (maxterms) not included in the
original function, F.

�
 Example

�
 F(w,x,y,z) = � m(0,1,6,10,11,14,15)

�
 F’(w,x,y,z) = � m(2,3,4,5,7,8,9,12,13)

�
 F(x,y,z) = ΠM(2,6,7)

�
 F’(x,y,z) = ΠM(0,1,3,4,5)

�
 A function, F, which includes all 2n possible minterms (maxterms) is equal to 1 (0).

Conversion Between Canonical Forms
�

 Canonical SOP to canonical POS
�

 Write expression in minterm list form
�

 Replace �  with �
�

 Replace minterm numbers with those not used in list
�

 Replace m with M
�

 Example�
 f(a,b,c) = �  m(1,3,6) = �   M(0,2,4,5,7)



�
 Canonical POS to canonical SOP

�
 Write expression in maxterm list form

�
 Replace �  with �

�
 Replace maxterm numbers with those not used in list

�
 Replace M with m

�
 Example�

 f(a,b,c,d)=� M(0,2,4,7,10,12,13,15)=� m(1,3,5,6,8,9,11,14)

Conversion From Noncanonical to Canonical Form
�

 SOP
�

 Apply distributive law to get an SOP represenation
�

 Add literals to create minterms by repeatedly applying�
 xy + xy’  = x

�
 Eliminate redundant terms

�
 POS

�
 Apply distributive law to get an POS represenation

�
 Add literals to create maxterms by repeatedly applying�

 (x+y) (x+y’ ) = x
�

 Eliminate redundant terms
�

 Example
�

 f(a,b,c) = a(b+c’ ) + a’bc
�

 f(a,b,c) = ab +ac’  + a’bc
�

 f(a,b,c) = ab(c+c’ ) + ac’ (b+b’) + a’bc
�

 f(a,b,c) = abc +abc’ + abc’  +ab’c’  + a’bc
�

 f(a,b,c) = abc + abc’  + ab’c’  + a’bc
�

 f(a,b,c) = �  m(3,4,6,7)
�

 Shannon’s Expansion Theorem can also be applied

Incompletely Specified Functions
�

 Functions may not be completely specified, allowing certain minterms or maxterms to be
undefined in truth table.

�
 Why?

�
 Certain input patterns may never be applied.

�
 Where all input patterns do occur, only an output of 0 or 1 may be only required for
certain input patterns.

�
 For canonical SOP or POS, don’ t care minterms or maxterms are specified as dci or di.

�
 Allows flexibility for optimal designs.

�
 Once circuit is designed, the circuit will have a defined value for all don’ t care conditions.

�
 Examples

�
 f(a,b,c) = �  m(1,3,6) + dc(4,5,7)

�
 f(x,y,z) = �   M(0,2,4,6,7)  + d(1)



References
�

 M. Morris Mano and Charles R. Kime, Logic and Computer Design Fundamentals, Prentice
Hall, Inc., 2000

�
 Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and J. David Irwin, Digital Logic Circuit
Analysis & Design, Prentice-Hall, Inc., 1995

�
 Donald D. Givone, Digital Principles and Design, McGraw-Hill, 2003


