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Boolean Algebra

Boolean Algebra
@ An algebrafor symbolically representing problems in logic & analyzing them mathematically
@ Based on work of George Boole
&~ An Investigation of the Laws of Thought
& Published in 1854
@ Switching Circuit Theory
#~Forms foundation for digital systems
&~ Boolean algebra applied to logic design
& Uses
% Describe terminal properties of alogic network
G Verification
% Manipulation
% Simplification
@ Mathematical system consisting of
&~ Set of elements, B
% BO(0,1)
&~ Binary Operators
L+
Lyo
@~ Equality Sign (=)
& Parenthesis ()
% Order of operations
@ More Definitions
%~ Constant
% An eement OB
%0, 1
® Variable
& Symbol representing an arbitrary element
@ Principle of Duality
& |f an expression in Boolean algebrais valid, the dual of the expression must also be valid.
&~ To obtain the dual of an expression:
% Replace every operator + with «
% Replace every operator » with +
% Replace every 1 with O
% Replace every 0 with 1
® Order of Precedence
& Parenthesis, Not, ¢, +



@ Notational Notes

%" The (*) operator is often omitted from an expression
% The juxtaposition of two variables implies the (¢) operator.

& The complement (x’) is often written with a bar (-) over the variable or expression to be
complemented.

Theorems & Postulates
@ Operations (+) and (+) are closed
Ex+ylB
Exey[IB
@ There exist at least two elements
X,y B
EXZEY
@ Complement
EFx+x =1
&Dud: xex =0
%~ Unary Operator
@ |dentity Elements
& |dentity elements exist, such that for every element x [IB
LO+x=x+0=x
vDua: xel=1ex=x
@ Complements of Identity Elements
=0 =1
“Dua: 1 =0
@ |dempotent Law
EFX+ X=X
G Dual: xeXx=x
@ Involution Law
F(X') =X
@ Absorption Law
FTX + Xy =X
% Dual: x(x +Yy) =X
@ Theorem
EX+XYy=X+Yy
G Dual: x(X' +Yy) =Xy
@ Commutative Law
FX+HY=Yy+X
GDua: xey=yex
@ Associative Law
TXt(ytzg)=(x+y)+z
S Dual: x (yz) = (xy) z



@ Distributive Law
FX (y + 2) = (xy) + (X2)
G Dua: X+ (y2) = (X +Yy)(X + 2)
® DeMorgan's Law
Fx+y) =Xy
G Dual: (xy) =X +Y
" Extension to more variables
LWw+x+y+z+.) =wxyzZ..
vDua: (wxyz)'..=w +X +y +Z7 ..
@ Consensus Theorem
EXYy+XZ+Yyz=Xy+Xz
HDual: (X +Y)(X' +2Z)(y +2) = (X +Y)(X' +2)

Complementing a Function
@ To complement a function, either
& apply DeMorgan’s Theorem
®"take dual of function and complement each literal

TheTruth Table
® A tablelisting the output for every possible combination of inputs for an n-input function
® Inputs
< Enumerated on |eft
% Count from 0...0to 1...1in binary to enumerate all values
® Outputs
<= Enumerated on right
® Columns
& n+ 1 (minimum)
¢, Often intermediate values are listed instead of just the output of the function

® Rows
="

Two-Valued Boolean Algebra
@® A Boolean algebrawhere B = {0,1}, and operators « and +

® AND ()
& Alternate Symbols
On
%0
® OR (+)
& Alternate Symbols S
S0 01 1
%0 10 1
1 1 1



Terminology
@ Negation
%~ Not Operation
@ Product
=" AND Operation
® Sum
®~OR Operation
@ Literal
&~ Each occurrence of avariablein its complemented or uncomplemented form
® Product Term
#Literd
%~ Product (conjunction) of literals
® Sum Terms
& Literal
&~ Sum (digunction) of literals
@ Boolean Formula or Expression

&~ Boolean variables & constants are connected with operators to describe a particular
function

Boolean Formula Manipulation
@ Complementing a Function
@ Expanding About a Variable
= (X1, Xiye o Xn) =X F(X2.0, L, ooy Xn) + X7 F(Xg, .00, 0, .l Xp)
= (X1, Xiye o Xn) = [Xi ¥ F(X1..., 0, ooy, Xe)] [0+ F(Xq, ..oy 1, ooy Xn)
® Equation Simplification
@ Reduction of the number of literals
#Reduction Theorems
S Xi F(X1y0 ey Xiyen e Xn) = X F(X1..., 1, ...y Xn)
X + f(X1,... Xiye o, Xn) =X+ F(X1..., 0, ..., Xp)
SX;' F(X1,.. e Xiy oo Xn) = X0 F(X1..., 0, ..., Xp)
©X' + (X1, Xy Xn) =X+ (X100, 1, L, Xn)

Examples

@® Determine the dual of F=xy + z
T(x+y)z

@ Determine F, where F= (x +y')z +Yy
TF=Xy+zZ)y



@ Simplify: F=X'yz +XyzZ + Xyz + Xyz
FF=yzZ +Xy

® Simplify: F=X'y' z+Xyz+ Xy z+ Xyz
FTF=z

® Smplify: F=w'X'Z +xy'z+wxy'Z +Wxy'z+Xx'Z
TF=X'Z +Xy'zZ+ WXy’
TE=X'Z +Xy'z+wy'Z



@ Simplify: F=y'Z +X'yz+ X'y + Xyz + Xz
FTFE=y+7



Canonical Forms

@ The standard form of an equation consists of product or sum terms
- Referred to as the canonical form
< Two forms
%, POS
4, SOP

Two Canonical Forms

® SOP & POS Forms
&~ Sum of Products (SOP)
& Formed by summing products terms
v'Each product formed by ANDing literals
% Example
vf(ab,cd)=ab+ac +abcd
&~ Product of Sums (POS)
& Formed by taking the product of sum terms
v'Each sum formed by ORing literals
% Example
vf(ab,c,d) = (ath) (b+c+d’) (at+b’'+cC’)
®~Note
% A sum is formed by using the OR operator
U A product isformed by using the AND operator

Canonical Sum of Products
® aka
&~ Canonical SOP
&~ Standard SOP
@~ Digunctive Normal Form
&~ Digunctive Canonical Formula
#~Minterm Expansion
#~Minterm Canonical Formula
® Minterm
&~ An product of literalsin which each variable is represented once and only once in either its
complemented or uncomplemented form.
@ Minterms are ORed to form the canonical SOP
@ Shorthand Notation
&~ Each minterm is represented by an n-bit binary code as follows
% Let an uncomplented variable represent 1
% Let a complemented variable represent 0
&~ Each minterm is represented by my
L wherei isthe decimal integer equivalent of the binary code representing the minterm
&~ |f the minterm, m , evaluates to 1, the minterm isincluded in the expression
®~Hence, the function, f(ab,c) =) m
& where m is aminterm that evaluatesto 1



& Example
% Consider f(a,b,c) =abc’ +abc+ ab'c

% Truth Table
abc f(ab,c)Minterm
000 0 0
001 0 1
010 1 2
011 1 3
100 0 4
101 1 5
110 0 6
111 0 7

Lf(ab,c) =Y m(2,3,5) =my + mz +ms
Lf (ab,c) =) m(0,1,4,6,7) = mg + my + Mg+ Mg+ my
@ Minterm list form
% The shorthand notation represented above as
f(ab,c) =) m(2,3,5)

Canonical Product of Sums

® aka
&~ Canonical POS
&~ Standard POS
%~ Conjunctive Normal Form
&~ Conjunctive Canonical Formula
@~ Maxterm Expansion
& Maxterm Canonical Formula
® Maxterm
&~ An sum of literalsin which each variable is represented once and only once in ether its
complemented or uncomplemented form.
® Maxterms are ANDed to form the canonical POS

@ Shorthand Notation
&~ Each maxterm is represented by an n-bit binary code as follows

% Let an uncomplemented variable represent 0

% Let a complemented variable represent 1
&~ Each maxterm is represented by M;

L wherei isthe decimal integer equivalent of the binary code representing the maxterm
#~|f the maxterm, M; , evaluatesto 0, the maxterm isincluded in the expression
®~Hence, the function, f(a,b,c) =] M;

& where M; is a maxterm that evaluates to 0
& Example

& Consider f(a,b,c) = (a+b+c) (at+b’ +c) (@ +b+c) (@ +b'+C')

% Truth Table

abc f(ab,c)Maxterm
000 0 0



001 1 1
010 0 2
011 1 3
100 0 4
101 1 5
110 1 6
111 0 7

%f(a,b,c) = H M(0,2,4,7) =MoM2 M4 M+
Q>f’(a,b,c) = H M(1,3,5,6) =M1 M3z MsMsg
" Maxterm list form
% The shorthand notation represented above as
f(ab,c) =] M(0,2,4,7)

Derivation of Minterm & Maxterm
@ Minterm

" The function not equal to O with a minimum number of 1'sin the truth table
® Maxterm

#~The function not equal to 1 with a minimum number of 0'sin the truth table
® Note

< For afunction, F, M;=ny’

Summary

@ 2" minterms (maxterms) exist for n Boolean variables
& These minterms (maxterms) can be represented by the binary numbers 0 through 2"-1
@ Any Boolean function can be represented as alogical sum (product) of minterms (maxterms)
@ The complement of afunction, F, consists of those minterms (maxterms) not included in the
original function, F.
& Example
& F(w,x,y,2) = >m(0,1,6,10,11,14,15)
vF(w,x,y,2) =>m(2,3,4,5,7,8,9,12,13)
O F(x,y,2) = MM(2,6,7)
v F(x,y,2) =NMM(0,1,3/4,5)
@® A function, F, which includes all 2" possible minterms (maxterms) is equal to 1 (0).

Conver sion Between Canonical Forms

@ Canonical SOPto canonical POS
&= Write expression in minterm list form
“" Replace ) with |
&~ Replace minterm numbers with those not used in list
&~ Replace m with M
&~ Example
Lf(ab,c) =Y m(1,3,6) =]] M(0,24,5,7)



@® Canonical POSto canonical SOP
=" Write expression in maxterm list form
& Replace [ [ with )’
&~ Replace maxterm numbers with those not used in list
= Replace M with m
&~ Example
% f(a,b,c,d)=][M(0,2,4,7,10,12,13,15)=Y m(1,3,5,6,8,9,11,14)

Conversion From Noncanonical to Canonical Form
® SOP
& Apply distributive law to get an SOP represenation
&~ Add literals to create minterms by repeatedly applying
Lxy + Xy’ =x
&~ Eliminate redundant terms
® POS
& Apply distributive law to get an POS represenation
&~ Add literals to create maxterms by repeatedly applying
B (x+y) (x+y') =X
&~ Eliminate redundant terms
@ Example
®f(a,b,c) =a(b+c’) + abc
#f(a,b,c) =ab +ac’ +abc
*"f(a,b,c) = ab(ctc’) + ac’ (b+b’) + abc
#"f(a,b,c) = abc +abc’ + abc’ +ab’'c’ +abc
#"f(ab,c) =abc +abc’ +ab'c’ +abc
*f(ab,c) =) m(3,4,6,7)
@ Shannon’ s Expansion Theorem can also be applied

I ncompletely Specified Functions

@ Functions may not be completely specified, allowing certain minterms or maxterms to be

undefined in truth table.
@ Why?
& Certain input patterns may never be applied.

“"Where al input patterns do occur, only an output of O or 1 may be only required for

certain input patterns.

@ For canonical SOP or POS, don’t care minterms or maxterms are specified as dc; or d.

@ Allows flexibility for optimal designs.

@ Oncecircuit is designed, the circuit will have a defined value for all don’t care conditions.

@ Examples
= f(ab,c) =) m(1,3,6) + dc(4,5,7)
*f(x,y,2) =[] M(0,24,6,7) +d(1)
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