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§.3.2 Fleating-Point Number Systems’

m_o»mbm.voman. numbers are analogous to scientific notation. They cir-
n.=E<nbn.nﬁ limitation of having a constant number of integer and frac-
tional vﬁ..»:c‘mbw the representation of very large and very small

:ch.onm. Like scieatific notation, floating-point numbers have a sign, - 1bit _ 8bits 23bits
mantissa (M), base (B), and exponent (E), as shown in Figure 5.25. For [o] 10000110 | 1100100 0000 0000 00000000 |
example, Goacsvon.“.ﬁxucuwnrog&nﬁmoggmo—. of.m!l&. A Feaction

4100. It has a mantissa of 4.1, a v»nno:c.»bmgnuvo:nu"&u.;n
ggigks&ngougnggﬂaagﬁnﬁr
Floating-point numbers are base 2 with a binary mantissa. 32 bits are
used to represent 1 sign bit, 8 exponent bits, and 23 mantissa bits.

= 1" We make on final modification to the exponent field. The exponent
& eeds 10 represent both positive and negative exponents. To do so, float-
f Ing-point uses a biased exponent, which is the original exponent plus
ﬂa-ba bias. 32-bit floating-point uses a bias of 127. For example, for
£ the exponent 7, the biased exponent is 7 + 127 = 134 = 10000110,.
* For the exponent —4, the biased exponent is: —4 + 127 = 123 =
& 01111011, Figure 5.28 shows 1.11001; X 27 represented in floating-
i point notation with an implicit leading one and a biased exponent of
"' 134 (7 + 127). This notation conforms to the IEEE 754 floating-point
L standard.

. Special Gases: 0, -, and Na

" The IEEE floating-point standard has special cases to represent numbers
- such as zero, infinity, and illegal results. For example, representing the
- 'number zero is problematic in floating-point notation because of the
| implicit leading one. Special codes with exponents of all 0’s or all 1’s are
. reserved for these special cases. Table 5.2 shows the floating-point
In binary floating-point, the first bit of the mantissa (to the left of -~ TP resntations of 0, e, and NaN. As with sign/magnitude numbers,

Example §.5 32-BIT FLOATING-POINT NUMBERS
Show the floating-point representation of the decimal number 228.

Selutlen: First convert the decimal number into binary: 228,y = 11100100, =
1.11001; X 27. Figure 5.26 shows the 32-bit encoding, which will be modified
later for efficiency. The sign bit is positive (0), the 8 exponent bits give the value
7, and the remaining 23 bits are the mantissa.

—23hits
111 0010 0000 0000 0000 0000

Mantissa

the binary point) is always 1 and therefore need not be stored. It js =  [Oating-point has both positi negative 0. NaN is used for num-
called the implicit leading one. Figure 5.27 shows the modified floating- bers that don't exdist, such as ¥~1 or log, (~3).

pomt - representation of 228 = 11100100, x 20 = 1.11001, x 27, Single- and Double—Precision Fermats

H»Mo..ﬁvrea leading one is not included in the 23-bit mantissa for So far, we have examined 32-bit floating-point numbers. This format is
etliciency. Only the fraction bits are stored. This frees up an extra bit also called single-precision, single, or float. The IEEE 754 standard also

for useful data.

e Table 5.2 IEEE 754 feating-point netatiess for 8, = =, and Nak




