

CSE 241
May 1, 2017

⑦

Spring 2017

IEEE 754 Floating Point number representation.

fp

1. fractional numbers
2. very small numbers
0-1 "real numbers"
3. very large numbers
astronomical
4. number representation
for efficient computation
5. measure the CPU
performance using
flops

floating point operations
per seconds

✓ 1. How do you represent floating point numbers?

range

✗ 2. How do perform algorithms on fp data?

(2)

May 1, 2017

32 bits

+ integers $0 \dots 0 \rightarrow 11 \dots 11$
 $0 \rightarrow 2^{32} - 1$

$0 \rightarrow 2^{32} - 1$

$2 \text{ bits} \rightarrow \begin{array}{c} 00 \\ 01 \\ 10 \\ 11 \end{array} \rightarrow 3$
 $2 \text{ bits} \rightarrow 0 + 2^2 - 1$

$n \text{ bits} \rightarrow 0 + 2^n - 1$

$32 \text{ bits} \rightarrow 0 + 2^{32} - 1$

approximation $2^{10} \approx 10^3$

$$\begin{aligned} 2^{32} &= 2^{10} \times 2^{10} \times 2^{10} \times 2^2 \\ &= 4 \times 2^{10} \times 2^{10} \times 2^{10} \\ &\approx 4 \times 10^3 \times 10^3 \times 10^2 \\ &= 4,000,000,000 \end{aligned}$$

What if added the requirement of negative numbers?

$0 \leftrightarrow 4G + ve$
 $-2G \rightarrow 0 \rightarrow 2G - ve \text{ and } + ve$

Solution: floating point representation
real numbers \Rightarrow IEEE754

5.3.2 Floating-Point Number Systems

Floating-point numbers are analogous to scientific notation. They circumvent the limitation of having a constant number of integer and fractional bits, allowing the representation of very large and very small numbers. Like scientific notation, floating-point numbers have a *sign*, *mantissa* (M), *base* (B), and *exponent* (E), as shown in Figure 5.25. For example, the number 4.1×10^3 is the decimal scientific notation for 4100. It has a mantissa of 4.1, a base of 10, and an exponent of 3. The decimal point *floats* to the position right after the most significant digit. Floating-point numbers are base 2 with a binary mantissa. 32 bits are used to represent 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Example 5.5 32-BIT FLOATING-POINT NUMBERS

Show the floating-point representation of the decimal number 228.

Solution: First convert the decimal number into binary: $228_{10} = 11100100_2 = 1.11001_2 \times 2^7$. Figure 5.26 shows the 32-bit encoding, which will be modified later for efficiency. The sign bit is positive (0), the 8 exponent bits give the value 7, and the remaining 23 bits are the mantissa.

1 bit	8 bits	23 bits
0	00000110	1100100000000000000000000

Mantissa

In binary floating-point, the first bit of the mantissa (to the left of the binary point) is always 1 and therefore need not be stored. It is called the *implicit leading one*. Figure 5.27 shows the modified floating-point representation of $228_{10} = 11100100_2 \times 2^7 = 1.11001_2 \times 2^7$. The implicit leading one is not included in the 23-bit mantissa for efficiency. Only the fraction bits are stored. This frees up an extra bit for useful data.

We make one final modification to the exponent field. The exponent needs to represent both positive and negative exponents. To do so, floating-point uses a *biased exponent*, which is the original exponent plus a constant bias. 32-bit floating-point uses a bias of 127. For example, for the exponent 7, the biased exponent is $7 + 127 = 134 = 10000110_2$. For the exponent -4 , the biased exponent is: $-4 + 127 = 123 = 01111011_2$. Figure 5.28 shows $1.11001_2 \times 2^7$ represented in floating-point notation with an implicit leading one and a biased exponent of 134 ($7 + 127$). This notation conforms to the IEEE 754 floating-point standard.

Special Cases: 0, $\pm\infty$, and NaN

The IEEE floating-point standard has special cases to represent numbers such as zero, infinity, and illegal results. For example, representing the number zero is problematic in floating-point notation because of the implicit leading one. Special codes with exponents of all 0's or all 1's are reserved for these special cases. Table 5.2 shows the floating-point representations of 0, $\pm\infty$, and NaN. As with sign/magnitude numbers, floating-point has both positive and negative 0. NaN is used for numbers that don't exist, such as $\sqrt{-1}$ or $\log_2(-5)$.

Single- and Double-Precision Formats

So far, we have examined 32-bit floating-point numbers. This format is also called *single-precision*, *single*, or *float*. The IEEE 754 standard also

1 bit	8 bits	23 bits
0	00000111	1100100000000000000000000

1 bit	8 bits	23 bits
0	10000110	1100100000000000000000000

1 bit	8 bits	23 bits
0	10000000	0000000000000000000000000

Table 5.2 IEEE 754 floating-point notations for 0, $\pm\infty$, and NaN

Number	Sign	Exponent	Mantissa
0	X	00000000	0000000000000000000000000
0	0	11111111	0000000000000000000000000
$\pm\infty$		11111111	1111111111111111111111111