
What's covered

Hiya!  In this guide, I'll go over how to set up your environment for creating, editing, compiling, 
executing, and submitting Verilog files on the Timberlake server.

What's not covered (yet)

What I don't go over in this part is the nitty-gritty instructions on how to write the Verilog code itself 
for either structural or behavioral Verilog-- that's for the next part.

If you're in need of help in this regard, please use this guide to at least get onto timberlake and take 
a look at the examples Bina provides in the following directory:

/web/faculty/bina/cse241/fall2014/demos

Once you've looked at those, download my Verilog files from Course Documents on UBLearns.

If you want to place those files on timberlake, you can use any SFTP program like FileZilla.  My 
preference is PSFTP as it comes with PuTTY and it's super simple to use.  Please email me if you'd like 
to learn how to do this.  I may include it in the next part.

-J.D.

revised 11/21/14

J.D.'s Verilog Guide - Part 1

   J.D.'s Verilog Guide Page 1    



Connecting to Timberlake

Using APT (Debian-based distros):
(~)> apt-get install openssh-client

i.

Using Pacman (Arch-- my preference):
(~)> pacman -S openssh

ii.

Using yum (RedHat, Fedora, etc):
(~)> yum -y install openssh-clients

iii.

First, make sure that you have the openSSH package installed on your machine.  Mac OS should 
come with it, as will most of the major distributions of Linux.  If you don't, the instructions for this 
vary from distro to distro, but below are a few.  Open your terminal program and then run the 
following:

a.

Open an SSH connection to Timberlake.  The command is pretty much the same across all of them, 
including Mac:
(~)> ssh jdmallen@timberlake.cse.buffalo.edu
(but obviously use your UBIT name instead of mine)

b.

Mac or Linux1)

Download PuTTY.  If you download it from the UBIT site, it should come packaged with the servers 
already preset.  If not, fill in the fields and make the selections like the screenshot below, then click 
Open.

a.
Windows,2)

Installation

   J.D.'s Verilog Guide Page 2    

http://www.buffalo.edu/ubit/service-guides/software/downloading/windows-software/managing-your-software/putty.html


Congrats! You've successfully SSH'd into your personal file directory on the CSE department's timberlake server. 
It should look something like the below. 

•

If this is your first time in these parts, you should organize a bit.  Let's see what you've got in there to start.  
Type "ls" and hit enter.  If this is your first time in there, you'll probably just see this:

•

But most of you probably have SOMETHING in there.•

Connected-- now what?

   J.D.'s Verilog Guide Page 3    



Woo! You just executed a linux command! And probably nothing happened! AWESOME!!11!1!•
Seriously, though, let's make a folder for your 241 stuff by using the mkdir or "make directory" command.  With 
Linux, no news is good news.  If you didn't get an error, safe to assume it was successful. 

•

Let's also pretend you had some stuff in there to start. If you took 116, you probably already do.•

Notice the 241cse was created. Let's navigate into it using the cd or "change directory" command.•

Sure enough, it's an empty directory.  Let's create a subdirectory for one of our assignments an traverse into it.•

Now we can start creating some files!  Let's use the text editor vim.
ALSO, if you want to learn more of what vim can do beyond this short guide, you can launch the program called 
"vimtutor" from the same command line.

•

Type in "vim" followed by a space, then the name of the file you want to create/edit.  In this case, for hw6, how 
about "vim prob535.v"?  Notice the ".v" at the end.  That's the file extension, and it's important for vim to know 
what syntax to highlight (since it tells vim that it's a Verilog file, as opposed to VHDL, Java, Python, etc).

•

As soon as you hit enter, vim will fill the window… (next page)•

Organizing your Timberlake home directory

   J.D.'s Verilog Guide Page 4    



File hasn't been saved or "written" yet.

The tildes indicate blank 
lines. You have to remember 
that a carriage return or line 
feed (CR/LF-- hitting the 
enter key) is a character!

Line Column

All-- all contents shown.•
Top-- at top of file.•
Bot-- at bottom of file.•
xx% -- percentage seen of file•

Position in file.

Current filename

This area in the lower-left will also 
tell you what mode you are in--
more on modes later.

vim starts in one of its few modes called "NORMAL" mode.  
You can't insert text into the document using NORMAL mode.

NORMAL mode can always be reached by hitting Esc.  During 
normal mode you can delete lines (dd), delete single 
characters (x), replace characters (r, then the character), and 
hundreds of other operations, but you cannot type into the 
document.

Enter INSERT mode.  You can reach this mode by typing "i" 
(insert) or "a" (append)…

The vim (vi Improved) interface

   J.D.'s Verilog Guide Page 5    



Now you can type away to your heart's content!

When you're done inserting text, hit Esc to go 
back to NORMAL mode.

Now that you're inserting, go ahead and type some Verilog code.  Problem 5.35 was assigned for 
HW, so I can't complete that here, but here's a real simple example of behavioral code that 
increments our input by 3 (a BCD to Excess-3 converter!).

•

Here's that code if it's hard to read in the image:

module prob535(out,in);  // Not really problem 5.35
    input [3:0] in;     // the 4-bit BCD code
    output [3:0] out;   // the 4-bit Excess-3 code
    reg [3:0] out;      // we want to manipulate the values of the output in
                        // this module

    always @ (in)       // if "in" changes, "always" execute this block:
        out <= in + 2'b11;      // Assign "out" the value of "in" + 3 in binary
                                // "2'b11" means 2 literals of binary type
                                // with values 1 and 1.
endmodule       // Close this module. We're done!

INSERT mode

   J.D.'s Verilog Guide Page 6    



Let's assume we also wrote a test bench.

Now we want to save! 
Hit Esc to exit INSERT mode, then type a colon character ":" followed by "w," then hit Enter.

The file was created in our hw6 directory. Let's go check it out!  First, we've gotta quit vim.
While in NORMAL mode, type a colon followed by "q" and hit Enter. If you have any unsaved work, it'll yell at you.  If you 
want to force-quit, add an exclamation point "!" to your command.

Saving / Quitting

   J.D.'s Verilog Guide Page 7    



Here's the code for the previous examples, in case you can't read it or you wanted to try it out.

module prob535(out,in);  // Not really problem 5.35
    input [3:0] in;     // The 4-bit BCD code
    output [3:0] out;   // The 4-bit Excess-3 code
    reg [3:0] out;      // We want to manipulate the values of the output
    always @ (in)       // If "in" changes, "always" execute this block:
        out <= in + 2'b11      // Assign "out" the value of "in" + 3 in binary
endmodule       // Close this module. We're done!

module prob535_tb; // Gotta test the code! This is a test bench module.
    reg [3:0] tin; // We want to manip the values of the INPUT now.
    wire [3:0] tout; // A wire is good enough to capture the output from above
    prob535 myCircuit(tout, tin); // Instantiate your module with proper args.
    initial // Run this block of code ONCE as soon as the code "executes"
        begin // Execute the following code in sequence
            tin = 4'b0000; // Initialize tin's 4 bits with values 0000.
            repeat(9) #20 tin = tin + 1'b1; // Incremnt tin +1 9 times w/ delay
        end // Close this begin block
    initial // Again, run the below as soon as code "executes"
        begin
            $dumpfile("prob535.vcd"); // Create a dumpfile for waveforms
            $dumpvars(0, prob535_tb); // Put all the vars from this tb in it.
            $monitor("in = %b | out = %b", tin, tout); // Print changes to vars.
        end             // %b is a placeholder for args provided after ","s
endmodule // Whew, done!

[And without comments:]

module prob535(out,in);
    input [3:0] in;
    output [3:0] out;
    reg [3:0] out;
    always @ (in)
        out <= in + 2'b11
endmodule

module prob535_tb;
    reg [3:0] tin;
    wire [3:0] tout;
    prob535 myCircuit(tout, tin);
    initial
        begin
            tin = 4'b0000;
            repeat(9) #20 tin = tin + 1'b1;
        end
    initial
        begin
            $dumpfile("prob535.vcd");
            $dumpvars(0, prob535_tb);
            $monitor("in = %b | out = %b", tin, tout);
        end
endmodule

The example code

   J.D.'s Verilog Guide Page 8    



Ok, now we've got our Verilog file:•

And we want to make sure it works.  This is where iverilog comes in.
First, we use iverilog to inspect our code.  Think of it as a compiler.  It will throw syntax 
errors if you typed anything wrong.  It will create a vvp file.

•

We can also capture that output in a text file.○

Then we use the program vvp (which comes with iverilog) to "execute" our code. This is 
when things like our "$monitor"s in our test benches will get to actually print to the 
window.

•

Finally, we can use GTKWave to analyze the waveform (but not with PuTTY!)•

The iVerilog step

"iverilog" calls the program.○

"-o" is an option to provide a name for the output file.  In this case, "prob535.vvp"○

Finally, we include all of our input files. Since we put the test bench module in the 
same file as the circuit itself, we can just include the one file. If you wrote your test 
bench in a separate file, you'll need to include that here, too.

○

In our hw6 directory, let's execute the following code. I'll break it down in a second.
{~/241cse/hw6} > iverilog -o prob535.vvp prob535.v

•

Let's see what happens:•

OK, so it says in in prob535.v on lines 7 and 8.○

Let's go back into vim and take a look!○

Uh-oh! Syntax error!

Hmm. Line 7 ("endmodule") and 8 ("module pr…") look fine. •
Let's look just before and after those lines.•
See it? … I forgot a terminating colon after 2'b11.•
Let's fix it, save our file, and run iverilog again.•
To save you the trouble of typing out that long command again, try hitting the Up Arrow on your 
keyboard to see previously typed commands.

•

Ta-da! No news is good news!•

Line number!

Icarus Verilog (iVerilog)

   J.D.'s Verilog Guide Page 9    



Let's take a look at the contents of our directory again.•

And look, there's the output file we specified!  Let's run it! Simple command:
{~/241cse/hw6} > vvp prob535.vvp

WOOOO!!! We did it! The code did exactly what we wanted it to do, and it even created a 
dumpfile for us! AWESOME!

Let's say we wanted to capture that output in a text file. What can we do?•

We can use the "script" command to record all terminal activity to a file.a.
We can pipe or redirect our standard output to a file using the ">" command.b.
And many others…c.

We have a few options:

Let's use option (b) for now.
Execute the following:•
{~/241cse/hw6} > vvp prob535.vvp > prob535_out.txt

Let's make sure it has what we want by using the "more", "less", or "cat" commands.•

Perfect!•

VVP / Capturing output

   J.D.'s Verilog Guide Page 10    


