Project #4 – Multi-tasking and Realtime Scheduling
CSE321: Embedded and Realtime Operating Systems Fall 2007

1. Objectives and overview of the project:
In Project #1 we prepared a simple hardware system and embedded in it a minimal operating system. In Project #2 the minimal operating system was enhanced by adding shell commands and by adding a simple device driver. In Project #3 we worked with UARTs and the serial communication mechanisms. In this project we will explore multi-taking using Embedded XINU processes control and scheduling methods. Specific goals are to
(i) study the software representing various components of the Embedded XINU operating system, especially the files dealing with process creation, and
(ii) implementing a simple multi-tasking using static priority and comment on the features provided by Embedded XINU and its suitability for implementing realtime systems.

2. Project Environment:

2.1 Operating system XINU: XINU ("Xinu Is Not Unix") is a small, academic operating system developed at Purdue University by Dr. Douglas E. Comer in the early 1980s for the LSI-11 platform; it has now been ported to a variety of platforms. Embedded XINU is an update of this project which attempts to modernize the code base (to ANSI-compliant C) and port the system to a modern architecture (specifically the MIPS architecture).
2.2 Hardware WRT54GL: We will use wireless router WRT54GL as a host for embedded the software we will develop for enhancing the features of an embedded operating system. The WRT54G is notable for being the first consumer-level network device that had its firmware source code released to satisfy the obligations of the GNU GPL. This allows programmers to modify the firmware to change or add functionality to the device. WRT54GL features a Broadcom MIPS processor BCM5352 (200-250Mhz), a four port switch, 802.11b and 802.11g wireless LAN support, a Web interface for configuration of the router, 16Mbytes of RAM and 4Mbytes of flash memory. Any modification to the router function itself has to be done by updating the firmware on the flash memory. However we will use the RAM to load the embedded XINU.
2.3 Test Environment: A simple embedded XINU network is shown in Figure 1.

[image: image3.png]

Figure 1: Network to enable serial network with Embedded XINU /WRT54GL platform
3. What to do?
3.1 Study Embedded XINU files
Download the Embedded XINU bundle (tarball) from http://xinu.mscs.mu.edu and untar it. Examine the directory structure and understand the purpose of various directories. Specifically, study these files in the directories:
· system (system operations): create.c, ready.c, sleep.c, wakeup.c, reshed.c and also initialize.c and main.c

· create.c has the “create” function that creates a process that can execute a method/function.
· ready.c has the function “ready” that readies the process for execution by the CPU
· resched.c has the method to find the next process to be scheduled for execution by the CPU
· sleep.c puts a process/task to sleep
· wakeup.c has the function that gets executed on clock interrupt and wakes up the processes whose sleep time has expired.
· Also observe the initialize.c and main.c methods that illustrate process creation and invocation.
The following code from initialize.c will create the main process and shell 0 (TTY0/Console):

 open(CONSOLE, SERIAL0);

 ready(create((void *)main, INITSTK, INITPRIO, "MAIN", 2, 0, NULL), RESCHED_NO);

 The following code in main (main.c) initializes the Shell 1 to be TTY1/SERIAL1:

 process main(int argc, char **argv)

 {

 /* Associate TTY1 with second serial port. */

 open(TTY1, SERIAL1);

 enable();

 /* Launch one shell process for each TTY device. */

 ready(create((void *)shell, INITSTK, INITPRIO, "SHELL0", 1, CONSOLE),RESCHED_NO);

 ready(create((void *)shell, INITSTK, INITPRIO, "SHELL1", 1, TTY1), RESCHED_NO);

Thus there is a root process and main process and shell0 and shell1 (corresponding to uart0 and uart1 of the UART).

3.2 Write a simple periodic task
A simple period task repeats itself with a predetermined period (P) and predetermined execution time (E). Make sure you design and myTask.h and myTask.c for implementing the periodic task.
3.3 Write multiple periodic tasks with priority
Create at least three or more tasks to illustrate the operation of a multitasking system with RMS scheduling that sets the priority based on the task’s period.
Submit all the code online.
4. Deadline for the project: December 4th.

IP: 192.168.0.130

Serial Communication

Serial Communication

UART0

UART1

PAGE
1

[image: image1][image: image2.png]

