
http://catless.ncl.ac.uk/Risks/19.49.html

What really happened on Mars Rover Pathfinder

Mike Jones <mbj@MICROSOFT.com>

Sunday, December 07, 1997 6:47 PM
The Mars Pathfinder mission was widely proclaimed as "flawless" in the

early days after its July 4th, 1997 landing on the Martian surface.

Successes included its unconventional "landing" -- bouncing onto the

Martian surface surrounded by airbags, deploying the Sojourner rover,

and gathering and transmitting voluminous data back to Earth, including

the panoramic pictures that were such a hit on the Web. But a few days

into the mission, not long after Pathfinder started gathering

meteorological data, the spacecraft began experiencing total system

resets, each resulting in losses of data. The press reported these

failures in terms such as "software glitches" and "the computer was

trying to do too many things at once".

This week at the IEEE Real-Time Systems Symposium I heard a fascinating

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems

kernel that was used in the Mars Pathfinder mission. In his talk, he

explained in detail the actual software problems that caused the total

system resets of the Pathfinder spacecraft, how they were diagnosed,

and how they were solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on

the Pathfinder spacecraft were executed as threads with priorities that

were assigned in the usual manner reflecting the relative urgency of

these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different

components of the spacecraft. A bus management task ran frequently

with high priority to move certain kinds of data in and out of the

information bus. Access to the bus was synchronized with mutual

exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low

priority thread, and used the information bus to publish its data.

When publishing its data, it would acquire a mutex, do writes to the

bus, and release the mutex. If an interrupt caused the information bus

thread to be scheduled while this mutex was held, and if the

information bus thread then attempted to acquire this same mutex in

order to retrieve published data, this would cause it to block on the

mutex, waiting until the meteorological thread released the mutex

before it could continue. The spacecraft also contained a

communications task that ran with medium priority.

Most of the time this combination worked fine. However, very

infrequently it was possible for an interrupt to occur that caused the

(medium priority) communications task to be scheduled during the short

interval while the(high priority) information bus thread was blocked

waiting for the (low priority) meteorological data thread. In this

case, the long-running communications task, having higher priority than

http://catless.ncl.ac.uk/Risks/19.49.html

the meteorological task, would prevent it from running, consequently

preventing the blocked information bus task from running. After some

time had passed, a watchdog timer would go off, notice that the data

bus task had not been executed for some time, conclude that something

had gone drastically wrong, and initiate a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL

engineers spent hours and hours running the system on the exact

spacecraft replica in their lab with tracing turned on, attempting to

replicate the precise conditions under which they believed that the

reset occurred. Early in the morning, after all but one engineer had

gone home, the engineer finally reproduced a system reset on the

replica. Analysis of the trace revealed the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had

it been on, the low-priority meteorological thread would have inherited

the priority of the high-priority data bus thread blocked on it while

it held the mutex, causing it be scheduled with higher priority than

the medium-priority communications task, thus preventing the priority

inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

VxWorks contains a C language interpreter intended to allow developers

to type in C expressions and functions to be executed on the fly during

system debugging. The JPL engineers fortuitously decided to launch the

spacecraft with this feature still enabled. By coding convention, the

initialization parameter for the mutex in question (and those for two

others which could have caused the same problem) were stored in global

variables, whose addresses were in symbol tables also included in the

launch software, and available to the C interpreter. A short C program

was uploaded to the spacecraft, which when interpreted, changed the

values of these variables from FALSE to TRUE. No more system resets

occurred.

ANALYSIS AND LESSONS

First and foremost, diagnosing this problem as a black box would have

been impossible. Only detailed traces of actual system behavior

enabled the faulty execution sequence to be captured and identified.

Secondly, leaving the "debugging" facilities in the system saved the

day. Without the ability to modify the system in the field, the problem

could not have been corrected.

Finally, the engineer's initial analysis that "the data bus task

executes very frequently and is time-critical -- we shouldn't spend the

extra time in it to perform priority inheritance" was exactly wrong.

It is precisely in such time critical and important situations where

correctness is essential, even at some additional performance cost.

HUMAN NATURE, DEADLINE PRESSURES

David told us that the JPL engineers later confessed that one or two

system resets had occurred in their months of pre-flight testing. They

had never been reproducible or explainable, and so the engineers, in a

very human-nature response of denial, decided that they probably

weren't important, using the rationale "it was probably caused by a

hardware glitch".

Part of it too was the engineers' focus. They were extremely focused

on ensuring the quality and flawless operation of the landing software.

Should it have failed, the mission would have been lost. It is

entirely understandable for the engineers to discount occasional

glitches in the less-critical land-mission software, particularly given

that a spacecraft reset was a viable recovery strategy at that phase of

the mission.

THE IMPORTANCE OF GOOD THEORY/ALGORITHMS

David also said that some of the real heroes of the situation were some

people from CMU who had published a paper he'd heard presented many

years ago who first identified the priority inversion problem and

proposed the solution. He apologized for not remembering the precise

details of the paper or who wrote it. Bringing things full circle, it

turns out that the three authors of this result were all in the room,

and at the end of the talk were encouraged by the program chair to

stand and be acknowledged.

They were Lui Sha, John Lehoczky, and Raj Rajkumar. When was the last

time you saw a room of people cheer a group of computer science

theorists for their significant practical contribution to advancing

human knowledge? :-)It was quite a moment.

POSTLUDE

For the record, the paper was:

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance

Protocols: An

Approach to Real-Time Synchronization. In IEEE Transactions on

Computers,

vol. 39, pp. 1175-1185, Sep. 1990.

