
 1 

NEXOS
1
 Lab2 – Interacting with Embedded XINU Operating System  

 

CSE321: Embedded and Realtime Operating Systems                                                         Fall 2015 

Due date: 11/20/2015 (you need to demo it during recitations)  

 

1. Objectives and overview of the project: 
 

We have prepared a simple hardware system and embeded in it a minimal operating system. The minimal 

operating system will be enhanced in this project by other features. We will use WRT54GL the wireless router 

from Linksys [1] and Embedded XINU operating system [2] for this purpose. Students will  

1. Study the architecture of WRT54GL wireless router.  

2. Test the embedded operating system using simple C programs. 

3. Modify the EXINU code to add new shell commands. 
4. Study the software representing various components of the Embedded XINU operating system 

5. Study the serial port features (UART0 and UART1) offered by XINU/WRT54GL platform  

6. Establish a communication channel between devices connected to these ports via a cyclic executive loop 

and try out some priority inversion problem/solution. 

7. Build a simple chat application with user login feature and realtime constraints. 

 

2. Project Environment 
2.1 Operating system XINU 

XINU ("Xinu Is Not Unix") is a small, academic operating system developed at Purdue University by Dr. 

Douglas E. Comer in the early 1980s for the LSI-11 platform; it has now been ported to a variety of platforms. 

Embedded XINU is an update of this project which attempts to modernize the code base (to ANSI-compliant C) 

and port the system to a modern architecture (specifically the MIPS architecture).  

 
2.2 Hardware WRT54GL 

We will use wireless router WRT54GL as a host for the software we will develop for enhancing the features of an 

embedded operating system. WRT54GL [8] has a very interesting history the details of which can be found at [3]. 

The WRT54G is notable for being the first consumer-level network device that had its firmware source code 

released to satisfy the obligations of the GNU GPL. This allows programmers to modify the firmware to change 

or add functionality to the device. WRT54GL features a Broadcom MIPS processor  BCM5352 (200-250Mhz), a 

four port Ethernet switch, 802.11b and 802.11g wireless LAN support, a Web interface for configuration of the 

router, 16Mbytes of SDRAM and 4Mbytes of flash memory. Any modification to the router function itself has to 

be done by updating the firmware on the flash memory. However we will load the embedded XINU image that 

we create in the SDRAM. See [4] more details on the memory layout of the SDRAM. 

                                                 
1
 NEXOS: Next Generation Embedded and Realtime Systems project partially funded by NSF DUE-CCLI-0737243 



 2 

 

 

Figure 1 Basic NEXOS Network to Upload Embedded XINU to WRT54GL 

2.3 Basic NEXOS Test Environment  

The lab environment will be supported by other hardware and software components to provide cross-compiling 

and networking support. In order to compile Embedded MIPS kernels on a workstation that is not itself a MIPS 

processor, it is necessary to build and install an appropriate cross compiler. Any time you modify the embedded 

XINU, the recompiled software will have to be reloaded into the WRT54GL system you are working on. A 

simple and basic network configuration allocating IP address to the host with the cross-compiler, the wireless 

router that will host the embedded XINU and a common router that forms the network are shown in Figure 1.  

The Common Firmware Environment (CFE) [5] is the firmware developed by Broadcom for the BCM947xx SoC 

platform (among others). It is the first code that runs when the router boots and performs functions: 

 Initializes the system  

 Sets up a basic environment in which code can run  

 Optionally provides a command line interface non-standard usage  

 Loads and executes a kernel image  

So, in normal operation, a user will not see CFE working at all; it will load the LinkSys kernel and send it on its 

merry way without hesitation. For us, however, CFE is crucial, because it provides us with the ability to load an 

image over the network using TFTP [6].  

2.4 Expanded NEXOS Test Environment 

The WRT54G can be used alone at any workstation with a serial port and a network connection.  This 

configuration may be suitable for very small laboratory installations concerned only with hardware systems 

assignments, but to take maximum advantage of the power of our platform it is far more useful to collect many 

WRT54G's as a pool of backends doled out by a central server.  Particularly in the context of more advanced 

courses in networking, it is best that this pool of backends be managed on a private network, isolated from the 

production network by a gateway. 

  

Network connection  

Serial Communication  

IP: 192.168.0.130  IP: 192.168.0.101  



 3 

 

Figure 2 Expanded NEXOS environment with a central server 

Figure 2 outlines the typical layout first used at Purdue and later nicknamed the warzone by the TinkerNet 

Project.  A cadre of dedicated target machines resides on the private network (warzone) where students may load 

and run experimental kernels on demand.  These dedicated, backend machines load a new O/S image from the 

central server across the network each time they reboot, allowing students to refresh the image frequently as they 

build their system. 

3. What to do? 

Section 3.1, 3.2, 3.3 describe stand-alone operations. While you can try this for your own interest 

we have prepared the lab for you, by making the modifications given below. These are given for 

completeness-sake and for understanding the concepts. 

3.1 Prepare Hardware  

1. Study the various components of the environment discussed above.  
2. Modify the Linksys WRT54GL hardware as follows: Obtain the parts as given in the list. Parts list: 

Quantity  Part Name  Details  Part / Model Number  

1  LinkSys WRT54GL Router  802.11b/g wireless broadband router  Linksys WRT54GL  

1  Ribbon cable  28 AWG, 10 conductor, 25'  Jameco 643508CM  

1  IDC socket connector  0.1”, 10 conductor  Jameco 32491CM  

1  IDC shrouded header  0.1”, 10 conductor  Jameco 67811CM  

1  RS232 Transmitter/Receiver  IC 2DVR/2RCVR RS232 5V 20-DIP  DigiKey MAX233CPP-ND  

1  DB9 Female  22AWG,SOLDER CUP  Jameco 15771CM  

1  DB9 Male  22AWG,SOLDER CUP  Jameco 15747CM  

 

3. Open the router. 

4. Attach the serial header. 

5. Wire serial header to MAX233A RS232 receiver/transmitter. 

6. Wire the DB9 connectors to MAX233A. 

http://xinu.mscs.mu.edu/WRT54GL
http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US%2FLayout&cid=1133202177241&pagename=Linksys%2FCommon%2FVisitorWrapper


 4 

Make sure you solder the socket before mounting the chip itself. 

 

3.2 Prepare software 

 

1. Download and cross-compile the embedded XINU code. 

2. Download TFTP for loading compiled XINU into the router via CFE. 

3. Study the XINU code in the subdirectories. 

4. Connect the serial port UART0 to the host (laptop/computer) with embedded XINU code and load it. 

5. Configure the serial communication software. 

6. Power-up the router. 

7. Access the CFE and upload the embedded XINU. 

 

3.3 Test the setup (5 points) 

 

Build and deploy XINU and examine the commands available. Write a simple test program “Hello XINU world” 

and test the setup. This can be done by updating xsh_test.c file in the shell directory. This file will be seed file for 

all the commands you are going to add to EXINU. 

 

3.4 Study Embedded XINU files  

Download the Embedded XINU bundle (tarball) from http://xinu.mscs.mu.edu and untar it. Examine the directory 

structure and understand the purpose of various directories. Specifically, study these files in the directories: 

 include  (header files): shell.h, device.h, gpio.h, interrupt.h, shell.h, tty.h, uart.h 

 shell (shell command files): shell.c, xsh_led.c, xsh_help.c 

 system (system operations): devtable.c, getc.c, putc.c, read.c, write.c, initialize.c, kprintf.c, open.c, 

close.c, startup.S 

 all the files in tty and uart directories. 

3.4.1 (5 points) Now edit the xinu code so that it prints out your own personal logo instead of XINU. 

Example: BINA, AJAY, QILI, ANDY.. etc. Don’t print our names. Print yours when the system starts. 

3.5 Write simple shell commands (10 points) 

The XINU shell is a subsystem designed as an interface for interacting with the operating system. The shell relies 

on the TTY driver to receive user input and provide output to the user. When XINU starts, a shell process is 

spawned for each serial port (or TTY). TTY operates on the UART driver. Study the steps given in 

http://xinu.mscs.mu.edu/Shell to understand how to create a shell command. Add this shell command: 

palindrome string that checks of the given string is a palindrome or not and prints a message. The string can 

be given as a command line argument. 

 palindrome unix 

 no 

 palindrome beboxeb 

 yes 

3.6 Study and understand some more commands: 

 system (system operations):  initialize.c, main.c 

The following code from initialize.c will create the main process and shell 0 (TTY0/Console): 

http://xinu.mscs.mu.edu/
http://xinu.mscs.mu.edu/Shell


 5 

        open(CONSOLE, SERIAL0); 
        ready(create((void *)main, INITSTK, INITPRIO, "MAIN", 2, 0, NULL), RESCHED_NO); 
 
     The following code in main (main.c) initializes the Shell 1 to be TTY1/SERIAL1: 

 

        process main(int argc, char **argv) 
       { 
        /* Associate TTY1 with second serial port. */ 
        open(TTY1, SERIAL1); 
        enable(); 
 
        /* Launch one shell process for each TTY device. */ 
        ready(create((void *)shell, INITSTK, INITPRIO, "SHELL0", 1, CONSOLE),RESCHED_NO); 
        ready(create((void *)shell, INITSTK, INITPRIO, "SHELL1", 1, TTY1), RESCHED_NO); 
 

Thus there is a root process and main process and shell0 and shell1 (corresponding to uart0 and uart1 of the 

UART). 

 Shell directory: Shell.c file 

Read the data structure associated with a shell process and how a line buffer is handled, tokenized etc. 

process shell(ushort descrp) 
{ 
        char    buf[SHELL_BUFLEN];                 /* line input buffer        */ 
        ushort  buflen;                            /* length of line input     */ 
 

Do you understand how to create a new process now by looking at the above process definitions and process 

creations? 

 all the files in tty and uart directories. 

 

Fig 3: Network to enable serial network with Embedded XINU /WRT54GL platform 

 

 

Serial 

Communication  

IP: 192.168.0.130  

 

Serial 

Communication  

UART0 
UART1 



 6 

 

 

3.7 Periodic real-time Tasks Scheduling (30 points) 

In this component of the project you will use Xinu threads to implement n periodic tasks.  

For the task set given below design a cyclic schedule: (i) determine the hyper-period (ii) determine 

frame size, (iii) provide a timing chart and (iv) a cyclic (executive) schedule. ti is the task#, ri is the 

arrival time, ei is the execution time, pi is the period and Di is the relative deadline. 

ti ri ei pi Di 

t1 0 2 4 4 

t2 0 1 6 6 

t3 0 1 12 12 

Based on the schedule write a Xinu program with (i) built-in schedule and (ii) built-in schedule to carry our these 

periodic tasks. Each task will be represented by a xinu process (thread). We discussed this in class and a 

solution is available in your text and in the demoes directory. You have to port it to XINU environment.  

3.8 Write a chat program (30 points) using UART serial connection 

a. Add a chat program with login feature that will prefix messages with the originator’s name and print it on the 

device (lap top).  

b. Extend the chat program to allow multiple user (more than 2) and allow chatters to join and leave. In this case 

there is a super user admin who can kick out chatters with problems. Assume that each chatter (person) is 

inherently a “problem chatter” with certain probability! 

3.9 XINU Semaphores for Synchronization and Mutual exclusion (10 points) 

Add two programs as shell commands that will illustrate use of XINU semaphores for (i) synchronization (ii) 

mutual exclusion. For (i) use threes tasks that will work in sequence passing data from one to the next. For (ii) 

Create three tasks that will have to share a resource like a counter and update it one at a time. Let the threads/tasks 

sleep for random amount of time for simulating computation. 

4. References 

 

[1] WRT54GL: http://www.linuxelectrons.com/features/howto/consolidated-hacking-guide-linksys-wrt54gl/print 

[2] EXINU: http://xinu.mscs.mu.edu 

[3] WRT4GL : http://www.wi-fiplanet.com/tutorials/article.php/3562391 

[4] EXINU memory: http://xinu.mscs.mu.edu/HOWTO:Deploy_Xinu 

[5] CFE: http://xinu.mscs.mu.edu/CFE 

[6] TFTP: http://www.tftp-server.com/tftp_server_overview.html 

[7] What really Happened on Mars?, An email/article by Mike Jones,Dec 1997. 

http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html 

[8] P. Asadoorian, and L. Pesce, WRT54G Ultimate Hacking Guide, edited by Raul Siles, Syngress, 2007. 

https://we.riseup.net/assets/48812/Linksys%20WRT54G%20Ultimate%20Hacking.pdf 

  

   

http://www.tftp-server.com/tftp_server_overview.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
https://we.riseup.net/assets/48812/Linksys%20WRT54G%20Ultimate%20Hacking.pdf


 7 

Appendix A 

 

How to get started with XINU: 

 

Note: you will have to login to nexos.cse.buffalo.edu before you do any of these: 

How to copy (or download) xinu baseline code, compile, deploy and run it. 

1. Obtain the tarball from home directory 

cd /home 

2. Copy the tarball to your directory 

cp xinu_mips-1.0.2.tar.gz ~ 

3. Go to your directory and untar the package 

cd ~ 

tar zxf xinu_mips-1.0.2.tar.gz 

4. Go to xinu_mips-1.0.2 

cd xinu_mips-1.0.2 

5. View all the files and folders 

ls 

6. Go to the compile folder 

cd compile 

7. Compile all the source files 

make 

8. View available routers 

xinu-status 

9. You need the file xinu.boot so stay in the compile folder 

mips-console router_name 

For example, 

mips-console moiz 

After a lot of messages a prompt appears. Test the xinu deployement using some of the shell commands. 

10. You have to release the router once you are done using it. 

Press ctrl + spacebar  

and then q 

 

 

 



 8 

 

Appendix B  

 

Adding shell commands. 

 

You will adding all the commands as shell programs, we have described below the steps for adding a shell 

command. This is adapted from exinu wiki; see http://xinu.mscs.mu.edu/Shell This page was added to the wiki on 

our request.  

 

Lets say we want to add an echo command that echo s the words that list after the command “echo” 

1. Update include directory shell.h file include/shell.h to include prototype 

command xsh_echo(ushort stdin, ushort stdout, ushort stderr, ushort nargs, char 

*args[]) 

 

2. Update shell/shell.c command table to include command as an entry  
{echo, FALSE, xsh_echo} 

 

The second parameter says “FALSE” because echo is not a built-in function. 

3. Add xsh_command.c in the shell directory 

Add xsh_echo.c file in the shell directory. 

Its content is as follows: 

========================================================================= 
/** 

 * @file     xsh_echo.c 

 * @provides xsh_echo 

 * 

 * $Id$ 

 */ 

/* Embedded XINU, Copyright (C) 2007.  All rights reserved. */ 

  

#include <kernel.h> 

#include <stdio.h> 

#include <string.h> 

  

/** 

 * Shell command echos input text to standard out. 

 * @param stdin descriptor of input device 

 * @param stdout descriptor of output device 

 * @param stderr descriptor of error device 

 * @param args array of arguments 

 * @return OK for success, SYSERR for syntax error 

 */ 

command xsh_echo(ushort stdout, ushort stdin, ushort stderr, ushort nargs, char 

*args[]) 

{ 

    int i;  /* counter for looping through arguments */ 

  

    /* Output help, if '--help' argument was supplied */ 

    if (nargs == 2 && strncmp(args[1],"--help",6) == 0) 

    { 

        fprintf(stdout, "Usage: clear\n"); 

        fprintf(stdout, "Clears the terminal.\n"); 

        fprintf(stdout, "\t--help\t display this help and exit\n"); 

        return SYSERR; 

    } 

  

http://xinu.mscs.mu.edu/Shell


 9 

    /* loop through the arguments printing each as it is displayed */ 

    for ( i = 1; i < nargs; i++ ) 

    { 

        fprintf(stdout, "%s ", args[i]); 

    } 

  

    /* Just so the next prompt doesn't run on to this line */ 

    fprintf(stdout, "\n"); 

  

    /* there were no errors so, return OK */ 

    return OK; 

} 

============================================================================ 

4. Update compile/Makefile to add the newly created shell file to be included in the compilation 

process. 

In the SHL=… 

add xsh_echo.c 

5. Compile and upload 

cd compile 

make 

xinu-status 

(find a free server: do not use the server name with a 1 at the end,. Example brylow1) 

 

To upload: 

mips-console server_name 

ex: mips-cosole moiz 

 

6. If everything worked alright you will see xsh> prompt. 

7. Type help to see “echo” listed as one of the shell commands 

8. Type the command “echo” and some words. You will see the words you types echoed back. 

  



 10 

Appendix C 

  

So you want to chat: Prepared by Brain Haag, one of the TAs for the course in its earlier offering. 

 

The purpose of this assignment is to illustrate how to use hardware UARTs via the TTY drivers, as such, our 

“chat” program will utilize these to communicate back and forth. Conceptually, the flow of data is as follows. 

Remember you connect to Brylow(or whichever) with mips-console, and to Brylow1 with xinu-console.  

>mips-console xyz 

>xinu-conxole xyz1 

 

 

 

 

To start with,  make sure to include standard libraries for dealing with text programs on Xinu. 

 

kernel.h 

stdlib.h 

shell.h 

stdio.h 

 

 

You’ll want some kind of structure to hold messages coming it from the console. Typically this will be a character 

array. For ease you can define a constant for its length. 

 

#define message_length 16  

char messages[message_length] 

 

Let’s say TTY1 has just sent us a message(us being TTY0), we can read that simply with the read command. You 

do this by reading from your own local TTY. 

 

read(TTY0, messages, message_length) 

 

This checks TTY0, for the char array messages, up to the length we defined earlier. 

 

Similarly you can write to TTYs quite simply. 

 

write(TTY1, messages, message_length)    

 

Or 

 



 11 

fprintf(TTY1, “text”) 

 

 

So TTY0 reads from itself, gets any new messages, user types a message, sends it to TTY1, TTY1 reads from 

itself, checks for new messages. This cycle repeats until the program is exited. 

 

One consideration is clearing the buffer of each TTY, when you send text to the TTY driver, it’s not deleted. So 

your second message may appear concatenated to the first one if you leave it there! You’ll need a method to reset 

it to empty after each message. 

 

That’s really all there is to chat on Xinu. 

 

 

Appendix D 

 

How to submit? What to submit? 

 

You submit one tar file with all the modifications for the various questions above. 

 

>cd   ?      to the root of the directory where you xinu kernel is located 

 

>scp –rp xinu_mips-1.0.2 bina@timberlake.cse.buffalo.edu:/home/faculty/bina/cse321/fall2015 

Where replace my username with your username, and the path with your cse321 path on 

timberlake 

 

>logout 

 

Then on timberlake, change folder to where you xinu kernel source code is; compress the files into one 

tar file and submit 

>tar -cvf  lab2.tar xinu_mips-1.0.2 

>submit_cse321 lab2.tar 

 

Appendix D: How to kill a process /task deployed on xinu? 

 

>ps 

Will give the process status. You will see something like this. 

 

PID TTY          TIME CMD 

16504 ?        00:00:00 sshd 

16505 pts/15   00:00:00 bash 

16989 pts/15   00:00:00 mips-console 

16990 pts/14   00:00:00 xinu-console 

27636 ?        00:00:00 gnome-keyring-d 

 

>kill -9 16504 

Where 16504 is the pid of the root process for your connection.  

Note: You cannot kill anybody else’s processes. We (myself, ajay and qi), the super users can. Let us if 

anybody is overstaying on xinu! 

 
 

mailto:bina@timberlake.cse.buffalo.edu:/home/faculty/bina/cse321/fall2015

