What we (and our students) can learn from radio-controlled
 flight?
 Dr. John Cerne Physics Department University at Buffalo

Interdisciplinary Science and Engineering Partnership and Division of Materials Research

radio-controlled

Radio waves, polarization, signal, AM/FM, digital...

What is a radio controlled (RC) airplane?

How does a plane gain altitude?

Demo 1: Using a radio to move control surfaces

How control surfaces work
Demo 2: Using rudder on model airplane

Types of RC planes:

Hobby, Jet turbine, 340 mph !
Hobby
1m wingspan 1 kg (2 lbs)

1900 mile flight across the Atlantic
 Ocean! 11 lb model took 38 hours to cross.

Military
15 m wingspan 500 kg (1100 lbs)

Commercial/law enforcement (aerial photography, surveillance, crop/drought monitoring,...)

Types of RC planes:

Electric powered

Hobby
1m wingspan
2.6 g (a raisin has a mass of ~1g!)

400 mph
glider
without a motor!

Commercial/law enforcement (aerial photography, surveillance, crop/drought monitoring,...)

How does a plane fly? Forces on a plane?

National Aeronautics and Space Administration
Four Forces on an Airplane

Increasing throttle?

Demo 3: Vapor flight at constant velocity
What happens if throttle increases? If elevator goes up?

What's another example of drag increasing as speed increases until drag matches the accelerating force (canceling it) and speed becomes constant?

What are FORCE, WORK, and POWER

Force (F) causes an object to accelerate
National Aeronautics and Space Administration
Four Forces on an Airplane
Work (W) is energy expended by a force to move an object a certain distance
W = F d
Power (P) is the RATE at which energy is expended by a force to move an object
$\mathrm{P}=\mathrm{W} / \mathrm{T}=(\mathrm{Fd}) / \mathrm{T}=\mathrm{F}(\mathrm{d} / \mathrm{T})=\mathrm{F} \mathrm{V}$

What is the power that a motor must supply to keep the airplane flying a constant speed? Assume V is large enough so the Lift cancels Weight.

Where does lift come from?

Demo 4: inverted flight, other modes (KE, hover)?

Demo 5: Bernoulli effect using two strips of paper

Traditional explanation:

Demo 6: Bernoulli effect
with human train

http://www.cam.ac.uk/research/news/how-wings-really-work

Wing deflects the airstream \rightarrow lift

Airflow across a wing (b) \rightarrow

$$
\vec{F}=\frac{\Delta \vec{p}}{\Delta t}
$$

$$
\vec{F}_{A B}=-\vec{F}_{B A}
$$

Audience Participation Question:

What physical parameters are involved in lift?
Hint: there are four
Speed V, air density ρ, wing area S, angle of attack α
What good and bad things happen as angle of attack α increases?
$\frac{\Delta M}{\Delta t}=\rho V S$
units: $\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]\left[\frac{\mathrm{m}}{\mathrm{s}}\right]\left[\mathrm{m}^{2}\right]=\frac{\mathrm{kg}}{\mathrm{s}}$

More lift (up to a point), more drag, airflow disturbed \rightarrow stall and control surfaces don't work \rightarrow Colgan Flight 3407 2/12/09

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes
units: $\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]\left[\frac{\mathrm{m}}{\mathrm{s}}\right]^{2}\left[\mathrm{~m}^{2}\right]=\frac{\mathrm{kg} \mathrm{m}}{\mathrm{s}^{2}}=\mathrm{N}=$ Force

Do larger planes fly faster?

Wing loading W/S

How does wing area and plane weight scale with size?

Aviation educational resources

www.acsupplyco.com
The Simple Science of Flight

jcerne@buffalo.edu

for waves and polarization claw.physics.buffalo.edu

How does wing area and plane weight scale

 with size?

A=WL
$\mathrm{M}=\rho \mathrm{WLH}$

$$
\begin{aligned}
& A^{\prime}=(2 W)(2 \mathrm{~L})=4 W \mathrm{WL}=4 \mathrm{~A} \\
& \mathrm{Mass}=\rho(2 \mathrm{~W})(2 \mathrm{~L})(2 \mathrm{H})=8 \mathrm{WLH}=8 \mathrm{M}
\end{aligned}
$$

Assuming a constant density, if all dimensions scaled up by a factor G, then $A=G^{2} A_{0}$ and $M^{\prime}=G^{3} M_{0}$

$$
\frac{W}{S} \propto \frac{M}{A}=\frac{G^{3} M_{0}}{G^{2} A_{0}}=G \frac{M_{0}}{A_{0}} \propto G
$$

How does wing area and plane weight scale with size?

$$
W \propto \text { Volume } \propto G^{3} \rightarrow W^{\frac{1}{3}} \propto G
$$

$$
\frac{W}{S} \propto G \propto W^{\frac{1}{3}}
$$

Relationship between W and W/S

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes-

Relationship between W and V

$$
\begin{aligned}
& \text { Lift } \propto F=\alpha \rho V^{2} S \\
& \text { Lift }=W \propto F=\alpha \rho V^{2} S \\
& W=0.3 V^{2} S \rightarrow \frac{W}{S}=0.3 V^{2} \\
& \frac{W}{S} \propto G \propto W^{\frac{1}{3}} \text { (from previous slide) } \\
& \rightarrow \frac{W}{S}=0.3 V^{2} \propto W^{\frac{1}{3}} \\
& \rightarrow W \propto V^{6}
\end{aligned}
$$

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes

Inherent Airframe Stability: Roll stability

Less lift and net force to left
\rightarrow no tendency to roll back

Dihedral wing

Lift on right wing less than on left wing
\rightarrow plane will roll back to level

Inherent Airframe Stability: more roll stability

Dihedral high wing

Lift on right wing less than on left wing AND mass of fuselage/motor tends to swing back to be centered on wing (like a pendulum)
\rightarrow plane will roll back to level

Advantages/Disadvantages of Dihedral: Yaw-Roll Coupling

Demo 7: Yawing a folded card

Inherent Airframe Stability: Pitch stability

If plane pitches up and airflow decrease, what is the response? increases, what happens to pitch?

Inherent Airframe Stability: Pitch stability

How do we check if our plane is tail/nose heavy?

Electronic Stabilization
 Inertial stabilization and the Foucault pendulum?!?!

Demo 8: Foucault model

iphone MEMS gyro

Demo 9: Drone stability

Putting electronic stabilization to work-helicopters/multi-copters

Demo 10: Quadcopter flight and first person view (FPV)

Drag and vortices

The Simple Science of Flight, From Insects to Jumbo

$D \propto V^{2}$ but induced drag (power lost to vortices) $D_{i} \propto \frac{W^{2}}{V^{2} b^{2}}$
where $b=\frac{\text { wing length }}{\text { wing chord }}$
(skinniness of wings)

Most efficient flying speed

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes

Demo 11: Yak Harrier (simulator and real model): what happens in slow flight

Transportation Efficiency

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes

Specific energy consumption

Flying and biology \rightarrow BIRDS

1. Biomechanics-how they fly

2. Biochemistry-how they power their flying
3. Navigation
4. Time-keeping

Biomechanics-how they fly

Flapping wings is like paddling a canoe. True or False?

The Simple Science of Flight, From Insects to Jumbo Jets, H. Tennekes

Biochemistry-how they power their flying

 What is the difference between energy and power?

Storage type
Alkaline battery
NiCd battery
NiMH battery
Lithium Polymer battery
Sugar
Fat
Gasoline

Energy Density (MJ/kg)
0.28
0.18
0.27
0.55

15
3242

Specific Power (W/kg)
39
150
200
6000 RC Models
muscles in humans
800* muscles in birds
*estimated from Tennekes p. 60 , swan consuming 2 g of fat per mile traveling at $45 \mathrm{mi} / \mathrm{h}$

Some comparisons

Bird 100W/kg muscle (better pulminary system)

Sugar energy density $14 \mathrm{MJ} / \mathrm{kg}$ (metabolized by humans)

Muscle efficiency 25\%

Premier athletes can maintain $5 x$ base heart and 20x base metabolic rates for extended time

Brushless motor efficiency 60\% to over 90\%

Fat energy density $32 \mathrm{MJ} / \mathrm{kg}$ (metabolized by most birds)

Birds can maintain 7x base heart and $14 x$ base metabolic rates for extended time

Navigation?

Photochemical reaction in retina produces short-lived chemical whose lifetime is sensitive to magnitude and direction of earth's very weak magnetic field, Nature 2008

Grains of iron oxide (magnetite) in beak, but more recent studies found it in inner ear

Even if they know direction, how do they know location (high winds ~ 40 mph can easily carry them off course)?

Amazing examples of endurance and navigation

Keeping flight sensor/computer stable You (Tube

Radio control: how does it work?

Electric Field
 What do electrons do?

Θ
conductor

Electric Current

Radio control: how does it work?

Transmitter antenna
Receiver antenna

Electromagnetic radiation \rightarrow LIGHT
Wavelength~10cm to 1 m

Polarization of light

 claw.physics.buffalo.eduDemo 12: Polarized wave Look at receiver antennas on quadcopter

Why TWO antennas?

Polarization Physlet

Antenna for left-circularly polarized light

Some Radio Control Concepts

Amplitude Modulation

Single radio frequency

IOOMMOONOC

Frequency Modulation
$35 \quad 48 \quad 18$
digital

Spread Spectrum

Equations (mathematical MODELS) are your friends!

Building a homemade ultralight...where to start?
What will we need?
What motor power, wing area, etc?

1. Estimate flying weight: 70 kg person +40 kg wings +30 kg motor/prop+60kg frame, fuel, misc $\rightarrow 200 \mathrm{~kg} \rightarrow 2000 \mathrm{~N}$
2. Want to cruise at $60 \mathrm{~km} / \mathrm{h}(17 \mathrm{~m} / \mathrm{s}) \rightarrow \mathrm{W} / \mathrm{S}=0.38 \mathrm{~V}^{2} \rightarrow \mathrm{~S}=19 \mathrm{~m}^{2}$
3. Glide ratio of 8 is reasonable for such an airplane, descent
$\mathrm{w}=2 \mathrm{~m} / \mathrm{s} \rightarrow \mathrm{P}=\mathrm{Ww}=4000 \mathrm{~W}$ to stay level, if want to climb at $3 \mathrm{~m} / \mathrm{s}$ need another $6000 \mathrm{~W} \rightarrow 10000 \mathrm{~W}(14 \mathrm{Hp})$ total
4. Best prop efficiency is around $50 \% \rightarrow$ need a 28 Hp motor

Numbers matter!

Global warming, energy/economics policy, business \rightarrow need reliable, quantitative estimates to make good decisions

The economics of flight:
Car with 4 people: 30 miles per gallon, 55 mph speed $\rightarrow 0.008$ gallon per passenger mile
Boeing 747 with 400 people and cargo (total $=115,000 \mathrm{lbs}$) 520 people+luggage: 0.18 miles per gallon (burn 3000 gallons per hour!), 560 mph speed
$\rightarrow 0.011$ gallon per passenger mile
40% increase in fuel but 10 times the speed!
In transportation industry, time matters: ocean liner produces 200 million passenger miles per year, high speed train produces 250 million passenger miles per year, and Boeing 747 produces 750 million passenger miles per year

Take Home message: Radio control flying is exciting, interesting, fun and can teach us a lot about science and technology

