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Introduction
An important and fundamental feature in modern 
operating systems is concurrent execution of 
processes/threads. This feature is essential for the 
realization of multiprogramming, multiprocessing, 
distributed systems, and client-server model of 
computation.
Concurrency encompasses many design issues 
including communication and synchronization among 
processes, sharing of and contention for resources.
In this discussion we will look at the various design 
issues/problems and the wide variety of solutions 
available.
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Topics for discussion
The principles of concurrency
Interactions among processes
Mutual exclusion problem
Mutual exclusion- solutions
� Software approaches (Dekker’s and Peterson’s)
� Hardware support (test and set atomic operation)
� OS solution (semaphores)
� PL solution (monitors)
� Distributed OS solution ( message passing)

Reader/writer problem
Dining Philosophers Problem
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Principles of Concurrency
Interleaving and overlapping the execution of 
processes.
Consider two processes P1 and P2 executing 
the function echo:

{
input (in, keyboard);
out = in;
output (out, display);

}
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...Concurrency (contd.)
P1 invokes echo, after it inputs into in , gets interrupted (switched). 
P2 invokes echo, inputs into in and completes the execution and 
exits. When P1 returns in is overwritten and gone. Result: first ch is 
lost and second ch is written twice.
This type of situation is even more probable in multiprocessing 
systems where real concurrency is realizable thru’ multiple 
processes executing on multiple processors.
Solution: Controlled access to shared resource
� Protect the shared resource : in buffer;  “critical resource”
� one process/shared code. “critical region”
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Interactions among processes
In a multi-process application these are the various degrees of 
interaction:
1. Competing processes:  Processes themselves do not share 

anything. But OS has to share the system resources among 
these processes  “competing” for system resources such as disk, 
file or printer.

Co-operating processes : Results of one or more processes 
may be needed for another process. 

2. Co-operation by sharing : Example: Sharing of an IO buffer. 
Concept of critical section. (indirect)

3. Co-operation by communication : Example: typically no 
data sharing, but co-ordination thru’ synchronization becomes 
essential in certain applications. (direct)
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Interactions ...(contd.)
Among the three kinds of interactions indicated 
by 1, 2 and 3 above:
1 is at the system level: potential problems : 
deadlock and starvation.
2 is at the process level : significant problem is 
in realizing mutual exclusion.
3 is more a synchronization problem.
We will study mutual exclusion and 
symchronization here, and defer deadlock, and 
starvation for a later time.
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Race Condition
Race condition: The situation where 
several processes access – and 
manipulate shared data concurrently. 
The final value of the shared data 
depends upon which process finishes 
last.
To prevent race conditions, concurrent 
processes must be synchronized.
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Mutual exclusion problem
Successful use of concurrency among processes 
requires the ability to define critical sections and 
enforce mutual exclusion.
Critical section : is that part of the process 
code that affects the shared resource.
Mutual exclusion: in the use of a shared 
resource is provided by making its access 
mutually exclusive among the processes that 
share the resource.
This is also known as the Critical Section (CS) 
problem.
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Mutual exclusion
Any facility that provides mutual exclusion 
should meet these requirements: 

1. No assumption regarding the relative speeds of 
the processes.

2. A process is in its CS for a finite time only.
3. Only one process allowed in the CS.
4. Process requesting access to CS should not wait 

indefinitely.
5. A process waiting to enter CS cannot be 

blocking a process in CS or any other processes.
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Software Solutions: Algorithm 1

Process 0
...
while turn != 0  do

nothing;
// busy waiting
< Critical Section>
turn = 1;
...

Problems : Strict 
alternation, Busy 
Waiting

Process 1
...
while turn != 1  do

nothing;
// busy waiting
< Critical Section>
turn = 0;
...
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Algorithm 2

PROCESS 0
...
flag[0] = TRUE;
while flag[1] do 
nothing;
<CRITICAL SECTION>
flag[0] = FALSE;

PROBLEM : Potential 
for deadlock, if one 
of the processes fail 
within CS.

PROCESS 1
...
flag[1] = TRUE;
while flag[0] do 
nothing;
<CRITICAL SECTION>
flag[1] = FALSE;
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Algorithm 3
Combined shared variables of algorithms 1 and 
2.
Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

Meets all three requirements; solves the critical-
section problem for two processes.
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Synchronization Hardware

Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}



9/17/02 B.Ramamurthy 15

Mutual Exclusion with Test-
and-Set

Shared data: 
boolean lock = false;

Process Pi
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}
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Synchronization Hardware 

Atomically swap two variables.

void Swap(boolean &a, boolean &b) 
{

boolean temp = a;
a = b;
b = temp;

}
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Mutual Exclusion with Swap

Shared data (initialized to false): 
boolean lock;
boolean waiting[n];

Process Pi

do {
key = true;
while (key == true) 

Swap(lock,key);
critical section

lock = false;
remainder section

}
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Semaphores 
Think about a semaphore ADT (class)
Counting semaphore, binary semaphore
Attributes: semaphore value, Functions: init, 
wait, signal
Support provided by OS
Considered an OS resource, a limited number 
available: a limited number of instances 
(objects) of semaphore class is allowed.
Can easily implement mutual exclusion among 
any number of processes.
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Semaphores

Synchronization tool that does not require busy 
waiting.
Semaphore S – integer variable
can only be accessed via two indivisible (atomic) 
operations

wait (S):  
while S� 0 do no-op;
S--;

signal (S): 
S++;



9/17/02 B.Ramamurthy 20

Critical Section of n Processes

Shared data:
semaphore mutex; //initially mutex = 1

Process Pi: 

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);
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Semaphore Implementation

Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

Assume two simple operations:
� block suspends the process that invokes it.
� wakeup(P) resumes the execution of a blocked 

process P.
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Implementation
Semaphore operations now defined as 

wait(S):
S.value--;
if (S.value < 0) { 

add this process to S.L;
block;

}

signal(S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}
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Semaphore as a General 
Synchronization Tool

Execute B in Pj only after A executed in 
Pi

Use semaphore flag initialized to 0
Code:

Pi Pj

� �

A wait(flag)
signal(flag) B
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Semaphores for CS

Semaphore is initialized to 1. The first process that 
executes a wait() will be able to immediately enter the 
critical section (CS). (S.wait() makes S value zero.) 
Now other processes wanting to enter the CS will each 
execute the wait() thus decrementing the value of S, and 
will get blocked on S. (If at any time value of S is 
negative, its absolute value gives the number of 
processes waiting blocked. )
When a process in CS departs, it executes S.signal() 
which increments the value of S, and will wake up any 
one of the processes blocked. The  queue could be FIFO 
or priority queue.
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Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for 
an event that can be caused by only one of the waiting 
processes.
Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

� �

signal(S); signal(Q);
signal(Q) signal(S);

Starvation – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended.
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Two Types of Semaphores

Counting semaphore – integer value 
can range over an unrestricted 
domain.
Binary semaphore – integer value can 
range only between 0 and 1; can be 
simpler to implement.
Can implement a counting semaphore 
S as a binary semaphore.
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Implementing as a Binary 
Semaphore

Data structures:
binary-semaphore S1, S2;
int C:  

Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S
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Implementing 

wait operation
wait(S1);
C--;
if (C < 0) {
signal(S1);
wait(S2);
}
signal(S1);

signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);
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Classical Problems of 
Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem
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Producer/Consumer problem

Producer
repeat
produce item v;
b[in] = v;
in = in + 1;
forever;

Consumer
repeat
while (in <= out) nop;
w = b[out];
out = out + 1;
consume w;
forever;
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Solution for P/C using 
Semaphores 

Producer
repeat
produce item v;
MUTEX.wait();
b[in] = v;
in = in + 1;
MUTEX.signal();
forever;

What if Producer is 
slow or late?

Consumer
repeat
while (in <= out) nop;
MUTEX.wait();
w = b[out];
out = out + 1;
MUTEX.signal();
consume w;
forever;
Ans: Consumer will 
busy-wait at the 
while statement.
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P/C: improved solution 
Producer

repeat
produce item v;
MUTEX.wait();
b[in] = v;
in = in + 1;
MUTEX.signal();
AVAIL.signal();
forever;

What will be the initial 
values of MUTEX and 
AVAIL?

Consumer
repeat
AVAIL.wait();
MUTEX.wait();
w = b[out];
out = out + 1;
MUTEX.signal();
consume w;
forever;

ANS:  Initially MUTEX = 
1, AVAIL  = 0.
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P/C problem: Bounded buffer

Producer
repeat
produce item v;
while((in+1)%n == out) 

NOP;
b[in] = v;
in = ( in + 1)% n;
forever;

How to enforce 
bufsize?

Consumer
repeat
while (in == out) NOP;
w = b[out];
out = (out + 1)%n;
consume w;
forever;

ANS: Using another 
counting semaphore.
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P/C: Bounded Buffer solution
Producer

repeat
produce item v;
BUFSIZE.wait();
MUTEX.wait();
b[in] = v;
in = (in + 1)%n;
MUTEX.signal();
AVAIL.signal();
forever;

What is the initial value 
of BUFSIZE?

Consumer
repeat
AVAIL.wait();
MUTEX.wait();
w = b[out];
out = (out + 1)%n;
MUTEX.signal();
BUFSIZE.signal();
consume w;
forever;

ANS: size of the bounded 
buffer.



9/17/02 B.Ramamurthy 35

Semaphores - comments

Intuitively easy to use.
wait() and signal() are to be implemented as atomic 
operations.
Difficulties: 
� signal() and wait() may be exchanged 

inadvertently by the programmer. This may result 
in deadlock or violation of mutual exclusion.

� signal() and wait() may be left out.
Related wait() and signal() may be scattered all over 
the code among the processes.
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Monitors

This concept was formally defined by HOARE in 1974.
Initially it was implemented as a programming 
language construct and more recently as library. The 
latter made the monitor facility available for general 
use with any PL.
Monitor consists of procedures, initialization 
sequences, and local data. Local data is accessible only 
thru’ monitor’s procedures. Only one process can be 
executing in a monitor at a time. Other process that 
need the monitor wait suspended.
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Monitors
monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .}
procedure body P2 (…) {

. . .} 
procedure body Pn (…) {

. . .} 
{

initialization code
}

}
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Monitors
To allow a process to wait within the monitor, a 
condition variable must be declared, as

condition x, y;
Condition variable can only be used with the 
operations wait and signal.
� The operation

x.wait();
means that the process invoking this operation 
is suspended until another process invokes

x.signal();
� The x.signal operation resumes exactly one 

suspended process.  If no process is suspended, 
then the signal operation has no effect.
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Schematic View of a Monitor
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Monitor With Condition 
Variables
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Message passing
Both synchronization and communication 
requirements are taken care of by this 
mechanism. 
More over, this mechanism yields to 
synchronization methods among distributed 
processes.
Basic primitives are: 

send (destination, message);
receive ( source, message);
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Issues in message passing

Send and receive: could be blocking or non-blocking:
� Blocking send: when a process sends a message it blocks 

until the message is received at the destination.
� Non-blocking send: After sending a message the sender 

proceeds with its processing without waiting for it to reach 
the destination.

� Blocking receive: When a process executes a receive it waits 
blocked until the receive is completed and the required 
message is received. 

� Non-blocking receive: The process executing the receive 
proceeds without waiting for the message(!).

Blocking Receive/non-blocking send is a common combination.
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Reader/Writer problem
Data is shared among a number of processes.
Any number of reader processes could be accessing the 
shared data  concurrently.
But when a writer process wants to access, only that process 
must be accessing the shared data. No reader should be 
present.
Solution 1 : Readers have priority; If a reader is in CS any 
number of readers could enter irrespective of any writer 
waiting to enter CS.
Solution 2: If a writer wants CS as soon as the CS is available 
writer enters it.
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Reader/writer: Priority 
Readers

Writer:
ForCS.wait();
CS;
ForCS.signal();

Reader:
ES.wait();
NumRdr = NumRdr + 1;
if NumRdr = 1 ForCS.wait();
ES.signal();
CS;
ES.wait();
NumRdr = NumRdr -1;
If NumRdr = 0 ForCS.signal();
ES.signal();
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Dining Philosophers Example
monitor dp 
{
enum {thinking, hungry, eating} 

state[5];
condition self[5];
void pickup(int i) // following 

slides
void putdown(int i) // following slides
void test(int i) // following 

slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;}

}
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Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}
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Dining Philosophers

void test(int i) {
if ( (state[(I + 4) % 5] != 

eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) 

{
state[i] = eating;
self[i].signal();

}
}
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Summary

We looked at various ways/levels of realizing 
synchronization among concurrent processes.
Synchronization at the kernel level is usually 
solved using hardware mechanisms such as 
interrupt priority levels, basic hardware lock, 
using non-preemptive kernel (older BSDs), 
using special signals.
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