
9/17/02 B.Ramamurthy 1

Mutual Exclusion, Synchronization
and Classical InterProcess

Communication (IPC) Problems

B.Ramamurthy

CSE421

9/17/02 B.Ramamurthy 2

Introduction
An important and fundamental feature in modern
operating systems is concurrent execution of
processes/threads. This feature is essential for the
realization of multiprogramming, multiprocessing,
distributed systems, and client-server model of
computation.
Concurrency encompasses many design issues
including communication and synchronization among
processes, sharing of and contention for resources.
In this discussion we will look at the various design
issues/problems and the wide variety of solutions
available.

9/17/02 B.Ramamurthy 3

Topics for discussion
The principles of concurrency
Interactions among processes
Mutual exclusion problem
Mutual exclusion- solutions
� Software approaches (Dekker’s and Peterson’s)
� Hardware support (test and set atomic operation)
� OS solution (semaphores)
� PL solution (monitors)
� Distributed OS solution (message passing)

Reader/writer problem
Dining Philosophers Problem

9/17/02 B.Ramamurthy 4

Principles of Concurrency
Interleaving and overlapping the execution of
processes.
Consider two processes P1 and P2 executing
the function echo:

{
input (in, keyboard);
out = in;
output (out, display);

}

9/17/02 B.Ramamurthy 5

...Concurrency (contd.)
P1 invokes echo, after it inputs into in , gets interrupted (switched).
P2 invokes echo, inputs into in and completes the execution and
exits. When P1 returns in is overwritten and gone. Result: first ch is
lost and second ch is written twice.
This type of situation is even more probable in multiprocessing
systems where real concurrency is realizable thru’ multiple
processes executing on multiple processors.
Solution: Controlled access to shared resource
� Protect the shared resource : in buffer; “critical resource”
� one process/shared code. “critical region”

9/17/02 B.Ramamurthy 6

Interactions among processes
In a multi-process application these are the various degrees of
interaction:
1. Competing processes: Processes themselves do not share

anything. But OS has to share the system resources among
these processes “competing” for system resources such as disk,
file or printer.

Co-operating processes : Results of one or more processes
may be needed for another process.

2. Co-operation by sharing : Example: Sharing of an IO buffer.
Concept of critical section. (indirect)

3. Co-operation by communication : Example: typically no
data sharing, but co-ordination thru’ synchronization becomes
essential in certain applications. (direct)

9/17/02 B.Ramamurthy 7

Interactions ...(contd.)
Among the three kinds of interactions indicated
by 1, 2 and 3 above:
1 is at the system level: potential problems :
deadlock and starvation.
2 is at the process level : significant problem is
in realizing mutual exclusion.
3 is more a synchronization problem.
We will study mutual exclusion and
symchronization here, and defer deadlock, and
starvation for a later time.

9/17/02 B.Ramamurthy 8

Race Condition
Race condition: The situation where
several processes access – and
manipulate shared data concurrently.
The final value of the shared data
depends upon which process finishes
last.
To prevent race conditions, concurrent
processes must be synchronized.

9/17/02 B.Ramamurthy 9

Mutual exclusion problem
Successful use of concurrency among processes
requires the ability to define critical sections and
enforce mutual exclusion.
Critical section : is that part of the process
code that affects the shared resource.
Mutual exclusion: in the use of a shared
resource is provided by making its access
mutually exclusive among the processes that
share the resource.
This is also known as the Critical Section (CS)
problem.

9/17/02 B.Ramamurthy 10

Mutual exclusion
Any facility that provides mutual exclusion
should meet these requirements:

1. No assumption regarding the relative speeds of
the processes.

2. A process is in its CS for a finite time only.
3. Only one process allowed in the CS.
4. Process requesting access to CS should not wait

indefinitely.
5. A process waiting to enter CS cannot be

blocking a process in CS or any other processes.

9/17/02 B.Ramamurthy 11

Software Solutions: Algorithm 1

Process 0
...
while turn != 0 do

nothing;
// busy waiting
< Critical Section>
turn = 1;
...

Problems : Strict
alternation, Busy
Waiting

Process 1
...
while turn != 1 do

nothing;
// busy waiting
< Critical Section>
turn = 0;
...

9/17/02 B.Ramamurthy 12

Algorithm 2

PROCESS 0
...
flag[0] = TRUE;
while flag[1] do
nothing;
<CRITICAL SECTION>
flag[0] = FALSE;

PROBLEM : Potential
for deadlock, if one
of the processes fail
within CS.

PROCESS 1
...
flag[1] = TRUE;
while flag[0] do
nothing;
<CRITICAL SECTION>
flag[1] = FALSE;

9/17/02 B.Ramamurthy 13

Algorithm 3
Combined shared variables of algorithms 1 and
2.
Process Pi

do {
flag [i]:= true;
turn = j;
while (flag [j] and turn = j) ;

critical section
flag [i] = false;

remainder section
} while (1);

Meets all three requirements; solves the critical-
section problem for two processes.

9/17/02 B.Ramamurthy 14

Synchronization Hardware

Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}

9/17/02 B.Ramamurthy 15

Mutual Exclusion with Test-
and-Set

Shared data:
boolean lock = false;

Process Pi
do {

while (TestAndSet(lock)) ;
critical section

lock = false;
remainder section

}

9/17/02 B.Ramamurthy 16

Synchronization Hardware

Atomically swap two variables.

void Swap(boolean &a, boolean &b)
{

boolean temp = a;
a = b;
b = temp;

}

9/17/02 B.Ramamurthy 17

Mutual Exclusion with Swap

Shared data (initialized to false):
boolean lock;
boolean waiting[n];

Process Pi

do {
key = true;
while (key == true)

Swap(lock,key);
critical section

lock = false;
remainder section

}

9/17/02 B.Ramamurthy 18

Semaphores
Think about a semaphore ADT (class)
Counting semaphore, binary semaphore
Attributes: semaphore value, Functions: init,
wait, signal
Support provided by OS
Considered an OS resource, a limited number
available: a limited number of instances
(objects) of semaphore class is allowed.
Can easily implement mutual exclusion among
any number of processes.

9/17/02 B.Ramamurthy 19

Semaphores

Synchronization tool that does not require busy
waiting.
Semaphore S – integer variable
can only be accessed via two indivisible (atomic)
operations

wait (S):
while S� 0 do no-op;
S--;

signal (S):
S++;

9/17/02 B.Ramamurthy 20

Critical Section of n Processes

Shared data:
semaphore mutex; //initially mutex = 1

Process Pi:

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

9/17/02 B.Ramamurthy 21

Semaphore Implementation

Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

Assume two simple operations:
� block suspends the process that invokes it.
� wakeup(P) resumes the execution of a blocked

process P.

9/17/02 B.Ramamurthy 22

Implementation
Semaphore operations now defined as

wait(S):
S.value--;
if (S.value < 0) {

add this process to S.L;
block;

}

signal(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

9/17/02 B.Ramamurthy 23

Semaphore as a General
Synchronization Tool

Execute B in Pj only after A executed in
Pi

Use semaphore flag initialized to 0
Code:

Pi Pj

� �

A wait(flag)
signal(flag) B

9/17/02 B.Ramamurthy 24

Semaphores for CS

Semaphore is initialized to 1. The first process that
executes a wait() will be able to immediately enter the
critical section (CS). (S.wait() makes S value zero.)
Now other processes wanting to enter the CS will each
execute the wait() thus decrementing the value of S, and
will get blocked on S. (If at any time value of S is
negative, its absolute value gives the number of
processes waiting blocked.)
When a process in CS departs, it executes S.signal()
which increments the value of S, and will wake up any
one of the processes blocked. The queue could be FIFO
or priority queue.

9/17/02 B.Ramamurthy 25

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.
Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

� �

signal(S); signal(Q);
signal(Q) signal(S);

Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

9/17/02 B.Ramamurthy 26

Two Types of Semaphores

Counting semaphore – integer value
can range over an unrestricted
domain.
Binary semaphore – integer value can
range only between 0 and 1; can be
simpler to implement.
Can implement a counting semaphore
S as a binary semaphore.

9/17/02 B.Ramamurthy 27

Implementing as a Binary
Semaphore

Data structures:
binary-semaphore S1, S2;
int C:

Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S

9/17/02 B.Ramamurthy 28

Implementing

wait operation
wait(S1);
C--;
if (C < 0) {
signal(S1);
wait(S2);
}
signal(S1);

signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

9/17/02 B.Ramamurthy 29

Classical Problems of
Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

9/17/02 B.Ramamurthy 30

Producer/Consumer problem

Producer
repeat
produce item v;
b[in] = v;
in = in + 1;
forever;

Consumer
repeat
while (in <= out) nop;
w = b[out];
out = out + 1;
consume w;
forever;

9/17/02 B.Ramamurthy 31

Solution for P/C using
Semaphores

Producer
repeat
produce item v;
MUTEX.wait();
b[in] = v;
in = in + 1;
MUTEX.signal();
forever;

What if Producer is
slow or late?

Consumer
repeat
while (in <= out) nop;
MUTEX.wait();
w = b[out];
out = out + 1;
MUTEX.signal();
consume w;
forever;
Ans: Consumer will
busy-wait at the
while statement.

9/17/02 B.Ramamurthy 32

P/C: improved solution
Producer

repeat
produce item v;
MUTEX.wait();
b[in] = v;
in = in + 1;
MUTEX.signal();
AVAIL.signal();
forever;

What will be the initial
values of MUTEX and
AVAIL?

Consumer
repeat
AVAIL.wait();
MUTEX.wait();
w = b[out];
out = out + 1;
MUTEX.signal();
consume w;
forever;

ANS: Initially MUTEX =
1, AVAIL = 0.

9/17/02 B.Ramamurthy 33

P/C problem: Bounded buffer

Producer
repeat
produce item v;
while((in+1)%n == out)

NOP;
b[in] = v;
in = (in + 1)% n;
forever;

How to enforce
bufsize?

Consumer
repeat
while (in == out) NOP;
w = b[out];
out = (out + 1)%n;
consume w;
forever;

ANS: Using another
counting semaphore.

9/17/02 B.Ramamurthy 34

P/C: Bounded Buffer solution
Producer

repeat
produce item v;
BUFSIZE.wait();
MUTEX.wait();
b[in] = v;
in = (in + 1)%n;
MUTEX.signal();
AVAIL.signal();
forever;

What is the initial value
of BUFSIZE?

Consumer
repeat
AVAIL.wait();
MUTEX.wait();
w = b[out];
out = (out + 1)%n;
MUTEX.signal();
BUFSIZE.signal();
consume w;
forever;

ANS: size of the bounded
buffer.

9/17/02 B.Ramamurthy 35

Semaphores - comments

Intuitively easy to use.
wait() and signal() are to be implemented as atomic
operations.
Difficulties:
� signal() and wait() may be exchanged

inadvertently by the programmer. This may result
in deadlock or violation of mutual exclusion.

� signal() and wait() may be left out.
Related wait() and signal() may be scattered all over
the code among the processes.

9/17/02 B.Ramamurthy 36

Monitors

This concept was formally defined by HOARE in 1974.
Initially it was implemented as a programming
language construct and more recently as library. The
latter made the monitor facility available for general
use with any PL.
Monitor consists of procedures, initialization
sequences, and local data. Local data is accessible only
thru’ monitor’s procedures. Only one process can be
executing in a monitor at a time. Other process that
need the monitor wait suspended.

9/17/02 B.Ramamurthy 37

Monitors
monitor monitor-name
{

shared variable declarations
procedure body P1 (…) {

. . .}
procedure body P2 (…) {

. . .}
procedure body Pn (…) {

. . .}
{

initialization code
}

}

9/17/02 B.Ramamurthy 38

Monitors
To allow a process to wait within the monitor, a
condition variable must be declared, as

condition x, y;
Condition variable can only be used with the
operations wait and signal.
� The operation

x.wait();
means that the process invoking this operation
is suspended until another process invokes

x.signal();
� The x.signal operation resumes exactly one

suspended process. If no process is suspended,
then the signal operation has no effect.

9/17/02 B.Ramamurthy 39

Schematic View of a Monitor

9/17/02 B.Ramamurthy 40

Monitor With Condition
Variables

9/17/02 B.Ramamurthy 41

Message passing
Both synchronization and communication
requirements are taken care of by this
mechanism.
More over, this mechanism yields to
synchronization methods among distributed
processes.
Basic primitives are:

send (destination, message);
receive (source, message);

9/17/02 B.Ramamurthy 42

Issues in message passing

Send and receive: could be blocking or non-blocking:
� Blocking send: when a process sends a message it blocks

until the message is received at the destination.
� Non-blocking send: After sending a message the sender

proceeds with its processing without waiting for it to reach
the destination.

� Blocking receive: When a process executes a receive it waits
blocked until the receive is completed and the required
message is received.

� Non-blocking receive: The process executing the receive
proceeds without waiting for the message(!).

Blocking Receive/non-blocking send is a common combination.

9/17/02 B.Ramamurthy 43

Reader/Writer problem
Data is shared among a number of processes.
Any number of reader processes could be accessing the
shared data concurrently.
But when a writer process wants to access, only that process
must be accessing the shared data. No reader should be
present.
Solution 1 : Readers have priority; If a reader is in CS any
number of readers could enter irrespective of any writer
waiting to enter CS.
Solution 2: If a writer wants CS as soon as the CS is available
writer enters it.

9/17/02 B.Ramamurthy 44

Reader/writer: Priority
Readers

Writer:
ForCS.wait();
CS;
ForCS.signal();

Reader:
ES.wait();
NumRdr = NumRdr + 1;
if NumRdr = 1 ForCS.wait();
ES.signal();
CS;
ES.wait();
NumRdr = NumRdr -1;
If NumRdr = 0 ForCS.signal();
ES.signal();

9/17/02 B.Ramamurthy 45

Dining Philosophers Example
monitor dp
{
enum {thinking, hungry, eating}

state[5];
condition self[5];
void pickup(int i) // following

slides
void putdown(int i) // following slides
void test(int i) // following

slides
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;}

}

9/17/02 B.Ramamurthy 46

Dining Philosophers
void pickup(int i) {

state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

9/17/02 B.Ramamurthy 47

Dining Philosophers

void test(int i) {
if ((state[(I + 4) % 5] !=

eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating))

{
state[i] = eating;
self[i].signal();

}
}

9/17/02 B.Ramamurthy 48

Summary

We looked at various ways/levels of realizing
synchronization among concurrent processes.
Synchronization at the kernel level is usually
solved using hardware mechanisms such as
interrupt priority levels, basic hardware lock,
using non-preemptive kernel (older BSDs),
using special signals.

	Mutual Exclusion, Synchronization and Classical InterProcess Communication (IPC) Problems
	Introduction
	Topics for discussion
	Principles of Concurrency
	...Concurrency (contd.)
	Interactions among processes
	Interactions ...(contd.)
	Race Condition
	Mutual exclusion problem
	Mutual exclusion
	Software Solutions: Algorithm 1
	Algorithm 2
	Algorithm 3
	Synchronization Hardware
	Mutual Exclusion with Test-and-Set
	Synchronization Hardware
	Mutual Exclusion with Swap
	Semaphores
	Semaphores
	Critical Section of n Processes
	Semaphore Implementation
	Implementation
	Semaphore as a General Synchronization Tool
	Semaphores for CS
	Deadlock and Starvation
	Two Types of Semaphores
	Implementing S as a Binary Semaphore
	Implementing S
	Classical Problems of Synchronization
	Producer/Consumer problem
	Solution for P/C using Semaphores
	P/C: improved solution
	P/C problem: Bounded buffer
	P/C: Bounded Buffer solution
	Semaphores - comments
	Monitors
	Monitors
	Monitors
	Schematic View of a Monitor
	Monitor With Condition Variables
	Message passing
	Issues in message passing
	Reader/Writer problem
	Reader/writer: Priority Readers
	Dining Philosophers Example
	Dining Philosophers
	Dining Philosophers
	Summary

