File Management

B. Ramamurthy

3/30/2005 B.Ramamurthy 1

Introduction

&File system is the most visible aspect of an
operating system. It provides the mechanism for
on-line storage of and access to programs and
data. It provides the persistent storage capability
to a system.

File systems consists of a collection of files, a
directory structure, access methods,
secondary storage management and
partitions (which separate logical and physical
collection of directories.)

3/30/2005 B.Ramamurthy 2

Topics for Discussion

@®File Attributes

#File operations and structures
#File Management

#®File Organization

@ File Directories

#®Directory Structure

@®File sharing

3/30/2005 B.Ramamurthy 3

File Attributes

Name: Symbolic reference for identifying the file
object.

Type: Information that indicates the contents of the
file.

#® Location: This information is a pointer a device and
to the location of the file on that device.

@ Size : The current size of the file (in bytes, words, or
blocks).

@ Protection: Access control information (RWX)

Time, date and user identification: This information
may be kept for (1) creation, (2) last modification
and (3) last use. Useful for protection, security and

3/30/2&1!@age monltorlng' B.Ramamurthy 4

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator 1D of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up: 1 for needs to be backed up
ASCll/binary flag 0 for ASCII file; 1 for binary file
Random access flag | 0 for sequential access only; 1 for random access
Temporary flag 0 for normal; 1 for delete file on process exit
Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record
_Key position Offset of the key within each record
Key length Mumber of bytes in the key field
Creation time Date and time the file was created
Time of last access Date and time the file was last accessed
Time of last change Date and time the file has last changed
Current size Mumber of bytes in the file
Maximum size Number of bytes the file may grow to

Possiblefile.attributes 5

3/30/2005

File Operations and structures

A file is an abstract data type.

@ Operations: open, close, create, destroy, copy, rename,
list, read, write, update, insert item, delete item, size,...

Open file table: Table containing information about open
files. When a file operation is requested, an index into
this table is used for locating the file. When a file is
closed the entry is removed from the table.

® Current file pointer: Last read/write location is kept as a
current-file-position pointer. Each process using the file
has a unique pointer. Where is it kept?

File open count: Number of opens done on a given file.
To allow deletion from Open file table, once the count
reaches 0.

3/30/2005 B.Ramamurthy 6

File Operations

Rt Create 7. Append
2. Delete s. Seek
3. Open 9. Get
4. Close attributes

s. Read 10. Set
s Write Attributes

11. Rename

3/30/2005 B.Ramamurthy 7

An Example Program Using File System Calls

(1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int arge, char *argv[]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

intin_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (arge = 3) exit(1); /* syntax error if argc is not 3 */

3/30/2005 B.Ramamurthy 8

An Example Program Using File System Calls

(2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /= if it cannot be created, exit */
/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out _fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

1
3/30/2005 B.Ramamurthy 9

File management

Users and application programs interact with file
system by means of commands for performing
operations on files.

@ These commands are translated into specific file
manipulation commands, after ensuring that the kind
of access requested is allowed.

® User view may be that of records or few bytes, but
the actual IO is done in blocks. Data conversion to
block “packing” is done. Optimized where applicable.

@ Now IO subsystems takes over by translating the file
sub commands into IO subsystem (disk I0)
commands.

3/30/2005 B.Ramamurthy 10

Elements of File Management

User & Dir File File Blocks
_.R d
Prgm Mgt. — Structure~ APT o0 0o
Commands
T File management™ 7
OS Disk
Scheduling etc.
3/30/2005 B.Ramamurthy 11
Directories

Single-Level Directory Systems

<—Root directory

#A single level directory system
= contains 4 files
= owned by 3 different people, A, B, and C

3/30/2005 B.Ramamurthy 12

Two-level Directory Systems

| <—Root directory

User
_—directory

A B C

A% ©

Letters indicate owners of the directories and
files

Files

3/30/2005 B.Ramamurthy 13

Hierarchical Directory Systems

. ~—Root directory

A hierarchical directory system

3/30/2005 B.Ramamurthy 14

Path INames

bin |=—— Root directory

/(B

B HAE
)

=®|\|

s L
.
53|z

o
a

3/30/2005 ~ B.Ramamu 15

Directory Operations

1. Create 5.Readdir
2. Delete 6.Rename
3. Opendir /.Link

4. Closedir 8. Unlink

3/30/2005 B.Ramamu rthy 16

File System Implementation
-

Entire disk

F’artition\ table Disk plariition
/ \\
[wen | | [

| Boot block | Super blockl Free space mgmt | I-nodes | Root dir | Files and directories

A possible file system layout

3/30/2005 B.Ramamurthy 17

Implementing Files (1)

T T T T T T T I T T T T T T T T T T 1T

File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
EEEEEEN NN EEEEEEEEEEEEEEEN
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files Dand £ have been
3/|Sem0ved B.Ramamurthy 18

Implementing Files (2)

A File A
> > 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
> - > 0
File File File File
block block block block
0 1 2 3
Physical 5] 3 1" 14
block

Storing a file as a linked list of disk blocks

3/30/2005 B.Ramamurthy 19

Implementing Files (3)

Physical
e block
0
1
2 10
3 1
4 7 ——— File A starts here
5
6 3 —~— File B starts here
7 2
8
9
10 12
11 14
12 1
13
14 1
15 —— Unused block

I§/|3rg/|2<0%5d list allocation BuF:s,lngrﬁﬂle allocation table |n
"BV

Implementing Files (4)

File Attributes

Address of disk block 0 —

Address of disk block 1 —

Address of disk block 2 —

Address of disk block 3 s

Address of disk block 4 —

Address of disk block 5 —

Address of disk block 6 —

Address of disk block 7 —

Address of block of pointers

Disk block

containing

additional
disk addresses

An example i-node

3/30/2005 B.Ramamurthy 21

Implementing Directories (1)

games i attributes games !] |:|
mail | attributes mail i —

1 . 1
news E attributes news i -"_""“--,..|:’
work | attributes work] N

(a) (b) q Data structure
containing the

attributes

(a) A simple directory
fixed size entries
disk addresses and attributes in directory entry
(b) Directory in which each entry just refers to an i-node

3/30/2005 B.Ramamurthy 22

Implementing Directories (2)

File 1 entry length {- Painter to file 1's name Entry

¢ for one
— File 1 attributes File 1 atfributes file
Entry T)
for ane { P o i Painter to file 2's name S
file e c ! : ;
M 7 3 3 File 2 atiributes
e t X |- Painter to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
P a r 5
) n n @
[= P r) i
File 3 entry length i k -
- - b u d [*]
File 3 attributes e t [p \ Heap
t ol ol ® —
n L] |
. § o o
=]
(a) ()

#® Two ways of handling long file names in directory
= (@) In-line
3/30/290([)) In a heap B.Ramamurthy 23

Shared Files (1)

. Root directory

Shared file

File system containing a shared file

3/30/2005 B.Ramamurthy 24

Shared Files (2)

C's directory

j
Owner=C
Count =1

!

B's directory C's directory

Jd
\ /
Owner=C
Count=2

!

B's directory

\
Owner=C
Count = 1

!

O O O

(a) (b) (c)
(a) Situation prior to linking
(b) After the link is created
JG)After the original owner removes the file

mamurthy

Disk Space Management

Free disk blocks: 16, 17, 18

42 s 230 e 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
7 342 422 0110110110111011
41 214 140 1110111011101
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101
310 180 142 0111011101110111
516 / 482 / 141 1101111101110111
A 1 KB disk block can hold 256 A bit map
32-bit disk block numbers
(a) (b)

(a) Storing the free list on a linked list
(b) A blt m@.gamamurthy 26

3/30/2005

Unix File Management

@ Unix kernel views all files as streams of bytes.
@ Four types of files are distinguished:

= Ordinary : regular files with data from
user, or an application.

= Directory : Contains list of file names +
pointers to associated inodes.

= Special : Terminals and other peripherals
are abstracted as files.

= Named : named pipes.

3/30/2005 B.Ramamurthy 27

Operations

pathname searching : lookup

name creation : creat, mknod, link, symlink, mkdir
@ name change/deletion: rename, remove, rmdir

@ attribute manipulation: access, getattr, setattr

® object interpretation: open,
readir,readlink,mmap,close

@ process control : advlock,ioctl,select

& object management : lock,
unlock,inactive,reclaim,abortop

3/30/2005 B.Ramamurthy 28

Inodes

#®Inode (information node) is a structure
that contains the key information
needed for managing a file.

@ Several files names may be associated
with an inode.

@®But each file contains exactly one file.

3/30/2005 B.Ramamurthy 29

Information in an inode

File mode (access and execution permissions)
Link count (how many references)

@ Owner ID

@ Group ID

#® File Size

File Address : 39 bytes of address information
as explained in the next slide

@ Last accessed time, last modified time, late
inode modification time

3/30/2005 B.Ramamurthy 30

File address

@ 13 3-byte addresses (39 bytes)

@ Direct :10 : direct pointer 10 1K chunks of
memory

Single indirect: 1 : indirect block of 256
points each of which points to a 1K : 256 K

@ Double indirect: 1: 256 X 256 : 656M
@ Triple Indirect : 1: 256X 256 X 256 : 16G

3/30/2005 B.Ramamurthy 31

Directories

Directories are allocated in units called
chunks.

@ Chunks are broken up into variable-
length directory entries.

#®A directory entry contains: index to
inode structures, the size of entry in
bytes, type of entry, length of filename,
pointer to next entry.

3/30/2005 B.Ramamurthy 32

Bytes 2 14

The UNIX V7 File System (1)

File name

|

T

I-node
number

A UNIX V7 directory entry

3/30/2005 B.Ramamurthy

33

The UNIX V7 File System (2)

Attributes

Single
1 » indirect
1 block

35 Double
indirect +

block /

Disk addresses

Addresses of
data blocks

-

T

=
Triple
3 indirect

4 block
x/"l 7

T +

A UNIX i-node

3/30/2005 B.Ramamurthy

/

34

The UNIX V7 File System (3)

Block 132 I-node 26 Block 406
3 I-node 6 is fusr is for is fusr/ast
Root directory is for /usr directory /usr/ast directory
1]. 6 |- 26 | -
Mode Mode
1] .. size 1] - size B | =
times times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields Jusr is in is i-node /usr/astis in is i-node
i-node 6 block 132 26 block 406 60

i€ steps in looking up /usr/ast/mbox .,

Summary

#\We studied
» The file abstraction and file API.

= File structure, directory structure and
storage allocation.

= Unix file system case study.

3/30/2005 B.Ramamurthy 36

