>. . kamamurtny

Operating Systems : Overview

#Bina Ramamurthy

CSE421

1/21/2005 B.Ramamurthy 1

‘Topics for discussion

What will you learn in this course? (goals)
What is an Operating System (0S)?

Evolution of OS

@ Important OS Components

Major achievements

Operating system design hierarchy

Sample systems

1/21/2005 B.Ramamurthy 2

“Goals for the course

' # Study the working of an OS.

Study the design and implementation of various
components of an OS.

Learn about the alternatives available to a designer at
all levels of abstraction in an OS.

Learn concurrent programming using processes,
threads, and system calls.

Understand the basics of distributed systems.

% Explore how you may contribute to solving many open
problems in OS and distributed systems.

1/21/2005 B.Ramamurthy 3

‘What is an Operating system?

| # Interface manager

= Human interaction made easy

= interfacing, abstraction, control and sharing
% Resource manager

= Efficient use of resources
Enhances hardware features

= “virtual” time, space and resource (processes, threads)
System and data security and protection provider

1/21/2005 B.Ramamurthy 4

User Interface

»_Operating system provides these facilities for the user:
= Program creation : editors, debuggers, other

development tools.

Program execution : load, files, IO operations.

Access to 10 devices: Read and writes.

Controlled access to files: protection mechanisms,

abstraction of underlying device.

System access: Controls who can access the system.

Error detection and response: external, internal, software

or hardware error.

Accounting: Collect stats., load sharing , for billing

purposes.

1/21/2005 B.Ramamurthy 5

Resource Manager

@ Processors : Allocation of processes to
processors, preemption, scheduling.

#Memory: Allocation of main memory.

#10 devices : when to access io devices,
which ones etc.

#Files: Partitions, space allocation and
maintenance.

Applications, Data, objects.

1/21/2005 B.Ramamurthy 6

D1 /D95NNK

>. . kamamurtny

Multiprogramming Processes

@ If memory can hold several programs, then
CPU can switch to another one whenever a
program is awaiting for an I/O to complete

& This is multitasking (multiprogramming)

¢ A program in execution,

An entity that can be assigned to and executed on a
processes,

Itis a unit of work.

Multiprogramming, time-sharing and real-time transaction
N “_‘ R~ ; - systems lead to the refinement of the concept of process.

4 A process can be defined by its attributes and behaviors : it
Program B \\'dl@ Walt

can be viewed as an Abstract Data Type (ADT) or class.
When instances of this class co-exist we have concurrent

W

Program ¢ Walt | Run| Wat processing.
S : . 4@ Issues in concurrent processing : synchronization, mutual
Coanbined |“_"‘“ |:‘;’JI“;'."E Wait ;“_\"““;"f o e exclusion, deadlock, communication.
Timeg ———————————»
1/21/20(Multiiprogramming with three programs 7 1/21/2005 B.Ramamurthy 8

Process A simple implementation of}lProcesses . ‘

Viewvary

4 Introduced to obtain a systematic way of contains the index info the - = =

monitoring and controlling program execution process list of the currently o =
. PR executing process (B)
*®A proce;s is an execytable program with: @ A process switch from B to A
= associated data (variables, buffers...) consist of storing (in [l
= execution context: ie. all the information that memory) Bs contextand - - | | w
loading (in CPU registers) A’s
+ the CPU needs to execute the process context
= content of the processor registers & A data structure that
« the OS needs to manage the process: provides flexibility (to add '
= priority of the process new features) -
= the event (if any) after which the process is waiting ST
= other data (that we will introduce later) :

The process index register ‘

1/21/2005 B.Ramamurthy 9 1/21/2005 B.Ramamurthy 10

Operating System Concepts:
~ Deadlock Handling ‘Memory management

HE : g Requirements: Process isolation, automatic allocation and
; ; maintenance, protection and access control, long-term
; storage facilities.

= B L] Virtual memory and file system facilities together satisfy
== [e ot all these requirements.

! ' # Virtual memory allows programs to address the memory

: : from a logical point of view without regard to the amount
ﬂ : of main memory available.
@) 4 File : persistent storage for programs and data.
Can view file also as an class? File concept makes makes

access control and protection convenient for the OS.

(a) A potential deadlock. (b) an actual deadlock.

1/21/2005 B.Ramamurthy 11 1/21/2005 B.Ramamurthy 12

D1 /D95NNK

>. . kamamurtny

Protection and Security

4 When sharing resources, protection of the
systems and user resources from intentional as
well as inadvertent misuse.

Protection generally deals with access control. Ex:
Read only file

Security deals usually with threats from outside
the system that affects the integrity and
availability of the system and information with
the system.

Example: username, password to access system.
Data encryption to protect information.

1/21/2005 B.Ramamurthy 13

Scheduling and resource

‘management

Scheduling and resource management is an
Operations Research (OR) problem.

Goals : Efficient use of resources, satisfy the
service time requested by a process, say, in a
real-time system and of course, fairness.

Short-term and long-term scheduling.

Queuing is one of the basic operations
associated with scheduling. Interrupt is another
important concept in the context of scheduling.

1/21/2005 B.Ramamurthy 14

Scheduling and Resource
.Management

Differential responsiveness
= discriminate between different classes of jobs
@ Fairness

= give equal and fair access to all processes of the
same class

4 Efficiency

= maximize throughput, minimize response time,
and accommodate as many users as possible

1/21/2005 B.Ramamurthy 15

File System

@ Implements long-term store (often on disk)

Information stored in named objects called
files
= a convenient unit of access and protection for OS
Files (and portions) may be copied into virtual
memory for manipulation by programs.

OS supports a directory structure for
organizing the files.

1/21/2005 B.Ramamurthy 16

System Structure

Because of it's enormous complexity, we view
the OS system as a series of levels

Each level performs a related subset of
functions

Each level relies on the next lower level to
perform more primitive functions

Well defined interfaces: one level can be
modified without affecting other levels

@ This decomposes a problem into a number of
more manageable sub problems

1/21/2005 B.Ramamurthy 17

D1 /D95NNK

System Call

Addhans
OuFFFFFFFE

7 Uty

S

User space <

|, Uiser program

[caling rass

Kernal space
(Cparnting sysserm)

There are 11 steps in making the system call
read (fd, buffer, nbytes)

1/21/2005 B.Ramamurthy 18

>. . kamamurtny

Some System Calls For Process
Management and File Management Microkernel architecture
Process management # Only a few essential functions in the kernel
Call Description e
pid = fork() Create a chiid process idaniical 1o the parent = primitive memory management (address space)
pid = waitpid(pid, &statloc, options) Wait for a child to terminate . Interprocess communication (IPC)
| & = execve(name, argv, environp) Replace a process’ core image | .)
| exit(status) Terminate process execution and return status | = basic scheduling
\ @ Other OS services are provided by processes
File management running in user mode (servers)
[Call I Description) . .)
| td = openttile, how, ...) | Open a file for reading, writing or bath = device drivers, file system, virtual memory...
s = close(fd Close an open file . S e i
o m[} d.}hulfsr, T [osd e @ More flexibility, extensibility, portability...
n = write(fd, buffer, nbytes) Write data from a buffer into a file @ A performance penalty by replacing service calls with
sition = Iseek(fd, offset. whence Move the file painter
e s, AT Btk : message exchanges between process...
1/21/2005 B.Ramamurthy 19 1/21/2005 B.Ramamurthy 20
. . Symmetric Multiprocessing
Multithreading

(SMP)

A computer with multiple processors

Each processor can perform the same
functions and share same main memory and
I/0 facilities (symmetric)

The OS schedule processes/threads across all
the processors (real parallelism)

Existence of multiple processors is transparent

@ A process is a collection of one or more threads that
can run simultaneously

@ Useful when the application consists of several tasks
that do not need to be serialized

Gives the programmer a greater control over the
timing of application-related events

@ All threads within the same process share the same
data and resources and a part of the process’s

N to the user.
execution context @ Incremental growth: just add another CPU!
It is easier to create or destroy a thread or switch @ Robustness: a single CPU failure does not halt
among threads (of the same process) than to do ’ :
these with processes the system, only the performance is reduced.
1/21/2005 B.Ramamurthy 21 1/21/2005 B.Ramamurthy 22

Operating system Modular
Distributed Systems View

Distribute the computation among several
physical processors.

@ Loosely coupled system — each processor has
its own local memory; processors
communicate with one another through
various communications lines, such as high-
speed buses or telephone lines.

Advantages of distributed systems.
= Resources Sharing
= Computation speed up — load sharing

Virtual Mem

Hardware
interrupts

Process +
primitives

Comm.
Prmtvs

File sys.

Devices

R Application Web
= Reliability Clisiits Clients
1/21/2805C0mmumcatlons B.Ramamurthy 23 1/21/2005 B.Ramamurthy 24

D1 /D95NNK

