

Protection and Security

B. Ramamurthy

BR

1

Access Matrix

- A general model of access control as exercised by a file or database management system is that of an access matrix.
- Basic elements of the model are:
 - Subject: An entity capable of accessing objects.
 The concept of subject equates that of a process.
 - Object: Anything to which access is controlled. Ex: files, programs, segments of memory.
 - Access right: The way in which an object is accesses by the subject. Examples: read, write, and execute.

Access Matrix (contd.)

	File 1	File 2	File 3	File 4	Acct1	Acct2	Printer1
userA	Own R, W		Own R, W		Inquiry Credit		
userB	R	Own R, W	W	R	Inquiry Debit	Inquiry Credit	Р
userC	R,W	R		Own R, W		Inquiry Debit	

BR 3

Access Matrix Details

- Row index corresponds to subjects and column index the objects.
- Entries in the cell represent the access privileges/rights.
- In practice, access matrix is quite sparse and is implemented as either access control lists (ACLs) or capability tickets.

- Access matrix can be decomposed by columns, yielding access control lists.
- For each object access control list lists the users and their permitted access rights.
- The access control list may also have a default or public entry to covers subjects that are not explicitly listed in the list.
- Elements of the list may include individual as well group of users.

BR 5

Windows NT(W2K) Security

- Access Control Scheme
 - name/password
 - access token associated with each process object indicating privileges associated with a user
 - security descriptor
 - access control list
 - used to compare with access control list for object

Security ID (SID)
Group SIDs
Privileges
Default Owner
Default ACL

BR 7

Security Descriptor (per Object)

Flags
Owner

System Access Control List (SACL)

Discretionary Access Control List (DACL)

BR

8

Access Control Using ACLs

- When a process attempts to access an object, the object manager in <u>W2K</u> executive reads the SID and group SIDs from the access token and scans down the object's DACL.
- If a match is found in SID, then the corresponding ACE Access Mask provides the access rights available to the process.

BR 11

RSA Encryption

To find a key pair e, d:

Choose two large prime numbers, P and Q (each greater than 10100), and form:

$$N = P \times Q$$
$$Z = (P-1) \times (Q-1)$$

2. For *d* choose any number that is relatively prime with *Z* (that is, such that *d* has no common factors with *Z*).

We illustrate the computations involved using small integer values for *P* and *Q*:

$$P = 13, Q = 17 \rightarrow N = 221, Z = 192$$

 $d = 5$

3. To find *e* solve the equation:

 $e \times d = 1 \mod Z$

That is, $e \times d$ is the smallest element divisible by d in the series Z+1, 2Z+1, 3Z+1,

$$e \ x \ d = 1 \mod 192 = 1, 193, 385, ...$$
 385 is divisible by d e = 385/5 = 77

12

RSA Encryption (contd.)

To encrypt text using the RSA method, the plaintext is divided into equal blocks of right k bits where $2^k < N$ (that is, such that the numerical value of a block is always less than N; in practical applications, k is usually in the range 512 to 1024).

$$k = 7$$
, since $2^7 = 128$

The function for encrypting a single block of plaintext M is: $(N = P \times Q = 13\times17 = 221)$, e = 77, d = 5:

 $E'(e, N, M) = M^e \mod N$

for a message M, the ciphertext is $M^{77} \mod 221$

The function for decrypting a block of encrypted text *c* to produce the original plaintext block is:

 $D'(d,N,c) = c^d \mod N$

The two parameters e,N can be regarded as a key for the encryption function, and similarly d,N represent a key for the decryption function.

So we can write $K_e = \langle e, N \rangle$ and $K_d = \langle d, N \rangle$, and we get the encryption function: $E(K_e, M) = \{M\}_K$ (the notation here indicating that the encrypted message can be decrypted only by the holder of the private key K_d) and $D(K_d, M) = \{M\}_K$.

<e,N> - public key, d - private key for a station

BR

13

Application of RSA

- Lets say a person in Atlanta wants to send a message M to a person in Buffalo:
- Atlanta encrypts message using Buffalo's public key B → E(M,B)
- Only Buffalo can read it using it private key
 b: E(b, E(M,B)) → M
- In other words for any public/private key pair determined as previously shown, the encrypting function holds two properties:
 - $E(p, E(M,P)) \rightarrow M$
 - $E(P, E(M,p)) \rightarrow M_{BR}$

14

,

How can you authenticate "sender"?

- (In real life you will use signatures: the concept of signatures is introduced.)
- Instead of sending just a simple message, Atlanta will send a signed message signed by Atlanta's private key:
 - E(B,E(M,a))
- Buffalo will first decrypt using its private key and use Atlanta's public key to decrypt the signed message:
 - $E(b, E(B,E(M,a)) \rightarrow E(M,a)$
 - $E(A,E(M,a)) \rightarrow M$

BR

15

Digital Signatures

- Strong digital signatures are essential requirements of a secure system. These are needed to verify that a document is:
- Authentic : source
- Not forged : not fake
- Non-repudiable: The signer cannot credibly deny that the document was signed by them.

Digest Functions

- Are functions generated to serve a signatures. Also called secure hash functions.
- It is message dependent.
- Only the Digest is encrypted using the private key.

BR 17

Alice's bank account certificate

1. Certificate type Account number

2. Name3. Account4. Certifying authorityBob's Bank

5. Signature {Digest(field 2 + field 3)}_{Bpriv}

