Virtual Memory Management

B.Ramamurthy

Demand Paging

Executable
0 code space
1 -
2 A3
3 N LAS O
4 |
5
6 —
7 ~
LAS 1
Main memory
(Physical Address Space -PAS) ~
Mapping between main memory LAS 2

and virtual memory

and LAS - Logical Address Space
is given by a page table

Virtual address space 2

Page Tables
(1)

t
~ [1Tt]o[o[o[o]oo]e]ofo[o[To]o]
 —

g|8[8[8

©
2

12-bit offset
copied directly
from input

to output

g|8[8|3(8

100
000
10
001
ol oo

8
7

3

5 on
4

3

2 = 110 |
1

| +—Prasent/
absent bit

Virtual page = 2 is used
as an index into the
page table

[ofe[1]eJoJo]ofefole]ofoo 1 o 0]

A

Internal operation of MMU with 16 4 KB pages ;

Outgeing

address
(24580)

Incoming
virtual
address
(8196)

Page Tables (2)

Second-level page tables

S | Page
S | table for
1o [thetop
o . | et
e | MY
Top-level E
page table
1023 u
- = —
= : 4 E
Brs 10 10 12 : I-
IPT\ PTzImm 4 -
3 1
s} 2 4.
1 .
] -,\ 4
1023
& Eo
5 3=
M 1.
a =
2 T PO
1 3
o Eas

32 bit address with 2 page table fields

Two-level page tables

Page Tables (3)

Caching
disabled Modified Present/absent
, [/ /
/// Page frame number
i’ \ \
\ \

Referenced Protection

Typical page table entry

Page Fault Handling (1)

« Hardware traps to kernel
. General registers saved
« OS determines which virtual page needed

« OS checks validity of address, seeks page
frame

. If selected frame is dirty, write it to disk

» Registers restored
. Program continues

Page Fault Handling (2)

o OS brings schedules new page in from disk

- Page tables updated

- Faulting instruction backed up to when it began
- Faulting process scheduled

Backing Store

Main memory Disk

+ Pages

L]
ENIEN

Page
table

(a)

Main memory

Pages

(b)

(a) Paging to static swap area
(b) Backing up pages dynamically

Disk
/,.-'-—'_'—'—-—...\
M~

Swap area

‘
EEEE

Sharing Pages: a text editor

ed1 E 0
ed2 n 1| data1
ed 3 page table 2| data3
for P,
data 1 B 3| edt
ed 1
Logical address space 4 ed 2
of process P, ed o E
s
ed 3
page table 6| eds
for P,
data 2
7| data2
ed1 n .
n Logical address space
of process P, 8
ed 2 ﬂ e
2] o
Edls page table
for P, 10
data 3
Logical address space

of process P,

Implementation Issues

Operating System Involvement with Paging
' when OS involved with paging

Process creation

- determine program size

- create page table

Process execution

- MMU reset for new process

- TLB flushed

3. Page fault time
- determine virtual address causing fault
- swap target page out, needed page in

4. Process termination time
- release page table, pages

10

Page Replacement Algorithms

7 @ Page fault forces choice

= which page must be removed
= make room for incoming page

Modified page must first be saved
= unmodified just overwritten

@ Better not to choose an often used page
= Will probably need to be brought back in soon

11

Optimal Page Replacement
Algorithm

#Replace page needed at the farthest point in
future
= Optimal but unrealizable

#®Estimate by ...
= logging page use on previous runs of process
= although this is impractical

12

Not Recently Used Page Replacement Algorithm

““# Each page has Reference bit, Modified
bit
= bits are set when page is referenced,
modified
@ Pages are classified
1. hot referenced, not modified
2. hot referenced, modified
3. referenced, not modified
s. referenced, modified
NRU removes page at random
= from lowest numbered non empty class

13

FIFO Page Replacement Algorithm

-§Maintain a linked list of all pages

= in order they came into memory

@ Page at beginning of list replaced

Disadvantage
= page in memory the longest may be often used

14

The Clock Page Replacement Algorith
L y

When a page fault occurs,
the page the hand is
IE' pointing to is inspected.

The action taken depends
on the R bit:

R = 0: Evict the page

m R = 1:Clear R and advance hand

15

Least Recently Used (LRU)

Assume pages used recently will used again soon
» throw out page that has been unused for longest time

Must keep a linked list of pages
= most recently used at front, least at rear
= update this list every memory reference !!

Alternatively keep counter in each page table entry
= choose page with lowest value counter
= periodically zero the counter

16

Simulating LRU in Software (1)

4 Page Page Page Page Page
701 2 3 01 2 3 01 2 3 01 2 3 01 2 3
ojo|1t]1]1 ojo|1]1 ofofo|1 ojfofofo ojojojo
1lofjofofo 1fof1f1 ifoflo] ij]o0jofo ilofofo
2|lo|ojo]o olojo]o 1{1]o]1 1]1]0f|0 1f1fof1
3|lojojojo ojojojo ofofjoj]o 111110 i1f1f{ofo0

(@ (b) (© (d (e)
ojofofo oft1]1 of1f1]o of1fofo ol1jojo
1]o0]1]1 ojo|1]1 ofof1]0 ofofofo oclojo|o
1]o0]|o0|1 olo|o|1 ofofo]o 11101 if1f{ofo
1]0j0}|0 ojojojo 1110 i1]1]0f|0 1f1f{1]o0

U] (9 (h) (i))]

LRU using a

matrix — pages referenced in order

011121312/110/31213 17
Simulating LRU in Software
< R bits for R bits for R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5, pages 0-5, pages 0-5,
clocktick0 | clocktick | clockticka | clocktickd | clocktickd
Lot el [+] : [t[Lelel* o] : [+]t[o[*]o]*] ; [t]o]e[e[t]e] ; [o[+]*[e[o]¢]
0[10000000 | ! [11000000] i [11100000 | i [11110000 | | [01111000 |
1{ ooooooo0 | | 10000000 | | 11000000 | | ot100000 | [10110000 |
2[10000000 | | [01000000] | [ooto0000] | [oo100000 | | [10001000]
3{ 00000000 | ,I | oooooooo | ; | 10000000 | ; | oto00000 | i | ootoo00 |
4| 10000000 | | 11000000 | [ot1o0000 | [10110000 | [otot1000]
5| 10000000] [otooo000 | [10100000 | [ot010000 | [ooto1000 |
(@) . (b) ' © ' (@) ' (e)
The aging algorithm simulates LRU in
software
@ Note 6 pages for 5 clock ticks, (a) — (e) s

Working-Set Model

@ A = working-set window = a fixed number of page references
Example: 10,000 instruction

@ WSS, (working set of Process P) =
total number of pages referenced in the most recent A (varies in
time)
= if A too small will not encompass entire locality.
= if A too large will encompass several localities.
= if A = o = will encompass entire program.
D =% WSS, = total demand frames
if D> m = Thrashing
Policy if D > m, then suspend one of the processes.

® @@

19

Working-set model

page reference table

SRS B S
L L

WS(t,) = {1,2,5,6,7) WS(t,) = (3,4}

...2615777751623412344434344413234443444...

20

Keeping Track of the Working
Set

® Approximate with interval timer + a reference bit
@ Example: A = 10,000

= Timer interrupts after every 5000 time units.
= Keep in memory 2 bits for each page.

= Whenever a timer interrupts copy and sets the
values of all reference bits to 0.

= If one of the bits in memory = 1 = page in
working set.

@ Why is this not completely accurate?
@ Improvement = 10 bits and interrupt every 1000

time units.

21

The Working Set Page Replacement Algorithm (2)

Information about {
one page

2084 [14

20031

Time of last use —

—— 1980 | 1

Page referenced __ |

1213 [0

during this tick

20141

2020 |1

2032 |1

Page not referenced __ |
during this tick

1620 [0

Page table

Current virtual time

R (Referenced) bit

Scan all pages examining R bit:
if (R==1)
set time of last use to current virtual time

if(R==0and age > 1)
remove this page

if(R==0andage<1)
remember the smallest time

The working set algorithm

22

The WSClock Page Replacement Algorithm

Curmtvitual tine

] —
[1&zo]a] [ezofo]

— —] —
2084]1) [2832]1] 2084]1) [2032]1]
— — — —
Z003]1 | \ (zoze | Z003[0] [zo26]1]
— — — —
[T T]
— * —
wop] | . [ZCE]

Tirmne o
lat une
]
—]
[1ezo]o] [i620]o]

— —]]
Z084]1) FIER 2084]1] 2032[1]
— — —] —
Fo03[1] 20201 [zaoa]1] / EFEA
—] —]
EEE] To14[1) a0 1] (200210}

Operation of the WSClock algorithm

23

Review of Page Replacement

Algorithms
G

Algorithm

Comment

Optimal

Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

' Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

24

Modeling Page Replacement Algorithms
Belady's Anomaly

All pages frames initially empty
o1 2 3 01 4 01 2 3 4
Youngest page oj1]|2|3|o]|1]|4]|4]|4]2]|3]|3
of1j2|3|oj1|1)1|4]2]|2
Oldest page oj1|l2|3|ojojo|1|4]|4
PPPPPPP P P 9 Page faults
(a)
o1 2 3 01 4 01 2 3 4
Youngest page oj1]2|3|3|3|4|0]|1]2]|3]|4
ojt1]2|2f2|3]4j0|1]2]|3
Oldest page oj1]1]|1]2|3]4|0|1]2
ojojof1]2]|3[4]|0]1
P P F P P P P P P P 10Page faults
(b)

FIFO with 3 page frames
& FIFO with 4 page frames
@ Ps show which page references show page faults 25

Stack Algorithms
it

Reference string 0 2

1
0l2|1
0f2

0

om|=|w] w

olm|=|w|t]

O =|w|;|&] &

oln|=|lu|lu(s|o| o
oln|=lu|s|o|w]| w
o|ln|=|lu]|lo|w|~|a] &
oM =l ||~ ~
o|ln|=|lu]|lo|s|w|w] w
o|ln|=|lu]|lo|s|~|w] w
o|ln|=|lo|s|w|w|a] v
oln|m|ols|~(U]w] w
o|lv|lo|s]lv|ofw|=] =
o|lnjlo|slulr|w]|=] =
o|lv|o|alo|w]|=|~] ~
o|v|lo|salu|w|~|=] =
o|lv|lo|slu|w]|=|w] w
o|m|lo|n|~]w|&~]=] =

T lo|n|=|lu]la|lo|w]|~] ~
T |o|m|o|n]~]=|w|&] &

Page faults PPPPPPP

o V|jom|=w|lofls|y|w|t] ;g
@ TV(jojmwo|s]|~]|U|w]|=] =

8
IS
3+]
w
-

Distance string o o« o« =« © « « 4

N
S
(-}
4}

State of memory array, M, after each item in

reference string is processed
26

Page Size (1)

Small page size

Advantages
= less internal fragmentation

= better fit for various data structures, code
sections

= less unused program in memory
#Disadvantages
= programs need many pages, larger page tables

27

Page Size (2)

#Overhead due to page table and
internal fragmentation . e ace |

Overhead internal
«| fragmentation
#\Where

= S = average process size in bytes o
= p = page size in bytes Optimized when

= € = page entry p= /2S€

28

TLBs — Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

A TLB to speed up paging

29

Traditional page
table with an entry
for each of the 252
pages
252 -1

=
_~ ~

=l

table

256-MB physical

memory has 218

4-KB page frames
218 1

L. o~
= _~

Indexed
by virtual
page

Inverted Page Tables

Hash table
216 4 — T 1 T 1
— 1 |
0 ‘ — T]
Indexed / \
by hash on Virtual Page
virtual page page frame

Comparison of a traditional page table with an inverted page

30

