
 1

Project 3               CSE421/521: Introduction to Operating System                  Spring 2005 
Due Date: 4/30/2005 
Chat Application Using Nachos Networking Module 
1. Objectives:  
• Learn to work with Nachos networking for communication among processes. 
• Define and implement a “chat” protocol for interaction between a chat server and a chat client.  
 
2. Problem Statement: 
 

Chat rooms have become a popular way to support a forum for n-way conversation or discussion 
among a set of people with interest in a common topic. Chat applications range from simple, text-based 
ones to entire virtual worlds with exotic graphics. In this project you are required to implement a simple 
text-based chat client/server application. 

 
3. Problem Description: 

 
Email, newsgroup and messaging applications provide means for communication among people 

but these are one-way mechanisms and they do not provide an easy way to carry on a real-time 
conversation or discussion with people involved. Chat room extends the one-way messaging concept to 
accommodate multi-way communication among a set of people.  

 
4. Nachos networking infrastructure 

 
Nachos networking packages implements a very simple Unix domain (not internet domain), 

datagram socket. The files of importance to this project and their purpose are described below.  
 

threads directory: 
lockcond.h, lockcond.cc: for defining and implementing lock and condition synchronization primitives; 
needed for network applications to work. 
 
machine directory: 
network.h, network.cc:  Data structures to emulate a physical network connection. The network 
provides the abstraction of ordered, unreliable, fixed-size packet delivery to other machines on the 
network.You may note that the interface to the network is similar to the console device -- both are full 
duplex channels.  
 
sysdep.h, sysdep.cc : Interprocess communication operations, for simulating the network; Unix sockets 
creation, binding, closing etc. are called here to provide nachos socket functionality.     

 
network directory: 
post.h, post.cc: postoffice and mailbox, mail message definition and implementation.  
nettest.cc: application to test communication between host id 0 and host id 1 (these are hardcoded!) 
 
 
 
 
 



 2

5.  Chat Architecture: 
 
A chat application consists of a Chat Client (CC) one per person, a Chat Server (CS) and a two-way 
communication pipeline between the client and the server to send and receive conversational, control 
and status messages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Chat Application Overview 
 

5.1 Chat Client: 
 
Typical features of a CC include: (i) select chat server (server id), (ii) select a nickname for interaction 
and  (iii) ability to set and change user preferences such as number of messages displayed, change 
nickname, etc. You may design your own chat user interface.  
 
Implementation notes: 
 
(i) The server id is specified at command line (nachos –rs 1234 –m selfid –o serverid ) while executing 
the nachos process representing the client. 
(ii) Once the client process is running it could interactively ask the user for the nickname of the chat user 
and update this information locally and if needed by your design on the server. 

 
5.2 Chat Server: 
 

A chat server supports the set of clients for a room, by maintaining client handle (clientid in 
nachos –rs –m clientId –o serverid), and client name. Server also has a message interpreter that 
parses the message received from a client and delegates the command to the appropriate module.  
Sample architecture for the chat application is shown in Figure 2. You may change the 
architecture to suit your design. 
 
 
 

 
 

Chat 
Clients 

Chat  
Server 

Messages 

Status 

Control 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Chat Application Architecture 
 
The Chat client receives the user messages and user configuration set up commands and passes them to 
the server. Sometimes it is also possible to process some of the commands (Ex: Number of messages 
displayed) locally.  MsgProcessor in Figure 2 Chat Client is responsible for interpreting messages from 
the user. Sender and receiver are for communicating with the server. Messages are constructed as 
described in the protocol below. 
A chat server receives the commands and messages from the chat clients and processes them. 
MsgInterpreter is for unpacking, parsing and delegating the commands to the appropriate units on the 
server side. MsgMaker constructs the messages to be sent back according to the protocol described 
below. 
We will use nachos sockets for communication between the server and the client. 
Chat Protocol: 
 
Protocols such as TCP and HTTP provide rules for communication. They specify details of message 
formats; they describe how an application responds when a message arrives, and how to handle 
abnormal and error conditions. We describe the protocol we will use for the chat service in Section 8. 

 
6. Implementation Details 
 
Phase 1: Study all the code associated with the nachos networking. 
 
Phase 2: Perquisites: Lock and Condition: (15%)  Implement the lock and condition the skeleton for 
which are in threads directory. Test it. Run the nettest application in network directory by opening up 
two xterms/terminals and running two nachos processes (network id 0, 1) communicating with each 
other. 
1. Implement lock and condition. 
2. Go into network directory, gmake 
3. Run nachos on two xterm/terminals using these commands:  
nachos –rs 1234 –m 0 –o 1 

User  
Interface 

MsgProcessor 

Sender 

Receiver 

Chat Client 

Receiver 

MsgInterpreter 

ClientMgr 

MsgMaker 

Sender 

Chat Server 



 4

nachos –rs 1234 –m 1 –o 0 
4. You will observe the two processes sending messages and acknowledging. 
 
Phase 3: Ring Network: (5%)  Update the nettest.cc so that a set of nachos process with network ids 
(0, 1,2,3..) can communicate. To test this form a ring of at least three nachos processes representing 
three network nodes, node 0 sends message to node 1, node 1 receives and transmits the same message 
to node 2 and node 2 receives and transmits the message back to node 0 thus successfully completing a 
trip around the ring. 
 
Phase 4: (45%) Chat Server: Implement the chat server that behaves according to the protocol 
described in Section 8. Test it with dummy data/hard coded data. Assume that nicknames are predefined. 
 
Phase 5: (25%) Chat Client and Integration with Server: Implement the chat client and a simple text 
interface and integrate it with the server. 
 
Phase 6: (10%) Documentation: 
This includes internal documentation (comments) and a BRIEF, BUT COMPLETE external document 
(read as: paper) describing what you did to the code and why you made your choices.  DO NOT 
PARAPHRASE THIS LAB DESCRIPTION AND DO NOT TURN IN A PRINTOUT OF YOUR 
CODE AS THE EXTERNAL DOCUMENTATION. 
 
7. Deliverables and grading 
 
When you complete your project, remove all executables and object files.  If you want me to read a 
message with your code, create a README.NOW file and place it in the nachos code directory.  Tar 
and compress the code, and submit the file using the online submission system.  It is important that you 
follow the design guidelines presented for the system calls.  I will be running my own shells and test 
programs against your code to determine how accurately you designed your lab, and how robust your 
answers are. Grading for the implementation portion will depend on how robust and how accurate your 
solution is. Remember, the user should not be able to do anything to corrupt the system, and system calls 
should trap as many error conditions as possible. 
 
8. A Simple Chat Protocol 
SERVERINFO 
cmd_serverinfo { 

byte type = 0; 
 byte cmd = 0; 

 }; 
status_serverinfo { 

 byte type = 1; 
 byte cmd = 0; 

byte status = N; // 0 = OK, 1 = FAIL 
 byte length = M; // Size of message 
 byte[] message; 
  }; 
 
 OUTPUT: [SERVER] – CSE421/521 Nachos Networking Project 2005 
 OUTPUT: [SERVER] – ERROR : SERVERINFO Command Failed 



 5

 
LOGIN <nickname> 
cmd_login { 

 byte type = 0; 
 byte cmd = 1; 
 byte length = N; 
 byte[] nickname; 

 }; 
status_login { 

 byte type = 1; 
 byte cmd = 1; 

byte status = N; // 0 = OK, 1 =FAIL 
                                                           // 2 = Nickname in use 
                                                          // 3 = Already logged in 

 
 }; 
OUTPUT: [SERVER] – User <nickname> logged in.  
OUTPUT: [SERVER] – ERROR : LOGIN error. 
OUTPUT: [SERVER] – ERROR : LOGIN nickname <nickname> in use. 
OUTPUT: [SERVER]  – ERROR : LOGIN user already logged in. 

LOGOUT 
cmd_logout { 
                  byte type = 0; 
       byte cmd = 2; 
 }; 
 
status_logout { 
 byte type = 1; 
 byte cmd = 2; 
 byte status = N; // 0 = OK, 1 FAIL 
     // 2 = Not logged in 
 }; 
 
 OUTPUT: [SERVER] – User <nickname> logged out.  
 OUTPUT: [SERVER] – ERROR : LOGOUT error. 
 OUTPUT: [SERVER] – ERROR : User not logged in. 
 
SEND <message> 
cmd_send { 
 byte type = 0; 
 byte cmd = 3; 
 byte length = N; 
 byte[] message; 
 }; 
 
status_send { 
 byte type = 1; 
 byte cmd = 3; 



 6

 byte status = N; // 0 = OK, 1 FAIL 
     // 2 = Not in room 

}; 
 
bcast_send { 
 byte  type = 3; 
 byte cmd = 3; 
 byte length = N; 
 byte[]  msg;  // Single message Entry 
 }; 
OUTPUT: [SERVER] – ERROR : SEND error. 
OUTPUT: [SERVER] – ERROR : SEND not in room. 
OUTPUT: [<nickname>] – <msg> 
Send message is sent from a client to the server, which then broadcasts to all the clients. 

 
WHISPER <nickname> <message> 
cmd_whisper { 
 byte type = 0; 
 byte cmd = 4; 
 byte nlength= M; 
 byte[] nickname; 
 byte length = N; 
 byte[] message; 
 }; 
 
status_whisper { 
 byte type = 1; 
 byte cmd = 4; 
 byte status = N; // 0 = OK, 1 FAIL 
     // 2 = Not in room 
     // 3 = nickname not found 

}; 
 
bcast_whisper { 
 byte  type = 3; 
 byte cmd = 4; 
 byte length = N; 
 byte[]  msg;  // Single message Entry 
 }; 
OUTPUT: [SERVER] – ERROR : WHISPER error. 
OUTPUT: [SERVER] – ERROR : WHISPER not in room. 
OUTPUT: [*<nickname>*] – <msg> 
 
QUIT 
This command on the server side shuts the server down and cleans up all the space. (On the 
client side Logout command itself will terminate the program.)  
 


