Writing a MapReduce Program by Tom White
For our example we are going to write a program that takes web server access log files (as produced by an Apache Web Server, for example) and counts the number of hits in each minute slot over a week. We will analyze months of logs and plot the distribution in order to get a view of how traffic volumes tend to vary over the course of a week. The beauty of this approach is that the same program will scale to months or years of massive logs, simply by increasing the cluster size.

The best way to think about MapReduce programs is to think about the input and output of each phase: the Map phase and the Reduce phase. Each phase has key-value pairs as input, and key-value pairs as output. The types and number of records of the input and output may be different, although the Map output types must be the same as the Reduce input types. Let's see how to choose the types for our MapReduce program

The input to the Map phase is the access log files, and we use an input format that gives us key-value pairs which are the character offset within the access log (which we ignore) and the corresponding line. Our Map function takes a log line, pulls out the timestamp field for when the server finished processing the request, converts it into a minute-in-week slot, then writes out a (<minute-in-week slot>, <1>) key-value pair. We are mapping each line in the access log to its minute-in-week slot.

The Reduce is given <minute-in-week slot> keys and an iterator over all the values for the key that were produced by the maps. So all we have to do is sum the values as we iterate over them, in order to produce a final output which are (<minute-in-week slot>, <total hits>) key-value pairs. Hadoop's MapReduce infrastructure is actually doing a lot behind the scenes to make this work, and to make it reliable in the face of hardware failure. It even sorts the output of the Reduce phase by key, so we have exactly what we need to plot our graph. (We won't use Hadoop to plot our graph for us, but more of that later.)

To illustrate the way this all works, take the following three-line access log:

192.168.0.5 - - [22/Aug/2005:22:07:52 +0000] "GET / HTTP/1.1" 200 1722
192.168.0.5 - - [22/Aug/2005:22:07:52 +0000] "GET /styles/layout.css HTTP/1.1" 200 2187
192.168.0.5 - - [22/Aug/2005:22:08:00 +0000] "GET /projects.html HTTP/1.1" 200 4024

Our Map takes each input line and produces the following output (note 22:07 on 22 August 2005 is the 1387th minute in the week, where the week starts on Monday):

<0, 192.168.0.5 - - [22/Aug/2005:22:07:52 +0000] "GET / HTTP/1.1" 200 1722> -> <1387, 1>
<71, 192.168.0.5 - - [22/Aug/2005:22:07:52 +0000] "GET /styles/layout.css HTTP/1.1" 200 2187> -> <1387, 1>
<159, 192.168.0.5 - - [22/Aug/2005:22:08:00 +0000] "GET /projects.html HTTP/1.1" 200 40247> -> <1388, 1>

Our Reduce then adds up the 1 values emitted by the Map, to produce totals:

<1387, (1, 1)> -> <1387, 2>
<1388, (1)> -> <1388, 1>

The Reduce output is written out as a tab-separated file. It says there were two requests in the 1387th minute-in-week slot, and one in the 1388th - which is correct.

1387 2
1388 1

The Code

Let's translate the above ideas into Java code. First we create a class that will run our program:

public class AccessLogFileAnalyzer {
 //...
}

It contains our Map and Reduce inner classes and a main method to launch the job. Here's the Map class:

 public static class MapClass extends MapReduceBase implements Mapper {

 private final static LongWritable ONE = new LongWritable(1);

 private static Pattern p = Pattern
 .compile("([^]*) ([^]*) ([^]*) \\[([^]]*)\\] \"([^\"]*)\"" +
 " ([^]*) ([^]*).*");

 private static DateTimeFormatter formatter = DateTimeFormat
 .forPattern("dd/MMM/yyyy:HH:mm:ss Z");

 private IntWritable minute = new IntWritable();

 public void map(WritableComparable key, Writable value,
 OutputCollector output, Reporter reporter) throws IOException {

 String line = ((Text) value).toString();
 Matcher matcher = p.matcher(line);
 if (matcher.matches()) {
 String timestamp = matcher.group(4);
 minute.set(getMinuteBucket(timestamp));
 output.collect(minute, ONE);
 }

 }

 private int getMinuteBucket(String timestamp) {
 DateTime dt = formatter.parseDateTime(timestamp);
 return dt.getMinuteOfDay() + (dt.getDayOfWeek() - 1)
 * DateTimeConstants.MINUTES_PER_DAY;
 }

 }

The interesting work is done by the map() method, which is specified in the org.apache.hadoop.mapred.Mapper interface. It takes the value parameter that it is passed and casts it to a org.apache.hadoop.io.Text type - we shall see later how this is specified later. The Text object is a Hadoop framework class that can be serialized using Hadoop's serialization protocol and stores text in a UTF-8 encoding. We convert it to a regular Java String, before we use a regular expression for extracting the timestamp field from a Extended Log File Format record. We call the utility method getMinuteBucket(), which uses the handy Joda Time library to convert the timestamp to an integer minute-in-week slot, then write our output to the org.apache.hadoop.mapred.OutputCollector. Notice we use an org.apache.hadoop.io.IntWritable to wrap the key, and a org.apache.hadoop.io.LongWritable to wrap the value, so that Hadoop can serialize the values.

The Reduce code is much simpler:

 public static class ReduceClass extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += ((LongWritable) values.next()).get();
 }
 output.collect(key, new LongWritable(sum));
 }
 }

We simply iterate through the values we are passed, which are the same types as the Map output values (LongWritable), and sum them. The key is also the same as the Map output key, an (IntWritable), and we use it to emit the final key-value pair: the minute-in-week slot, and total hit count for that slot.

Hadoop actually comes with a library of stock maps and reducers, and in this case we could have used LongSumReducer which does the same as our reducer, but it's useful to see how you can implement your own reducer.

The final piece of code is the main() method that runs the MapReduce job.

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err
 .println("Usage: AccessLogFileAnalyzer <input path> <output path>");
 System.exit(-1);
 }

 JobConf conf = new JobConf(AccessLogFileAnalyzer.class);

 conf.setInputPath(new Path(args[0]));
 conf.setOutputPath(new Path(args[1]));

 conf.setOutputKeyClass(IntWritable.class);
 conf.setOutputValueClass(LongWritable.class);

 conf.setMapperClass(MapClass.class);
 conf.setCombinerClass(ReduceClass.class);
 conf.setReducerClass(ReduceClass.class);

 conf.setNumReduceTasks(1);

 JobClient.runJob(conf);
 }

