bive 2, % /4,1

ip (shgk, g)
emit (B b, Eﬁiﬂ:ﬁ ()Y

&,

o(w» Cowbiner (gt | Pt (s, 6)
A E Csr--)

LowM<° ' ,
(S5, ¢ wa W‘ﬁ
S

EMIT CM}, FM’
e Leduces 4
ACA R N

Sy & ST
L+ C \)/
(s/ towut))

0\;""9 [@[/Cl)7

Comi|-& © S
. (S$,¢) W\Q’&uri

e P
s & Gk T
COWA, — Cﬁvuu\’%ﬁ/
Average & s/ ik
T (Zhurd {, T anﬁ

CSE4/587 Exam 1 Data-intensive Computing

Name:

CSE487 CSE587 (circle one)

1. (20 points) Given the following text data made up of the following sentences, pr
classical “wordcount” MapReduce program. Provide the output <k,v> pairs

(i) at the output of Mappers,

(i) at the output of Combiners,

(iii) at the input of the Reducers and
(iv) at the output of Reducers. .~

Assume 3 Mappers and 2 Reducers.

e

[

A_s:t:;;stop words {the, The, a, is, are, and}

_—

Spring 2017

(s

s

ocess it using the

I ‘M

di: T& blue sky and bright sun are b@ind the grey cloud. The cloud is dark and t

d2: The cloud is bright and the sun is grey. The sky is bright. The Sky is blue.

he sun is rising. The cloud
TAs \
i: M/zj.

d3: The dark cloud is behind the sun and the blue sky. T

he sun is bright.

is grey. y\ W/Q/q)

(bjr"‘/‘k £7'123>
gbwe LYY 132

¢ 4 LW%7
- (oA

L behivd 2
(ome 32
L by 47

[MR
Lw

30 CHAPTER 2. MAPREDU BASIC

Naa
/ & N BEI'JH
\ ‘ ‘/\'t'

!

combiner] [combiner] [combir\1er J combinerJ

T~

)
partitioner l [partitionerj [partitioner]

\/I Shuffle and Sort: aggregate values by keys J
o o]

! |
redIcerJ [redtlxcer] Fedljcer]
<8 H:

Figure 2.4: Complete view of MapReduce, illustrating combiners and part

partitioner

Partitioners determine which reducer is responsible for a particular key.

a combiner can significantly reduce the amount of data that needs to
the network, resulting in much faster algorithms.
The complete MapReduce model is shown in Figure 2.4. Output

Therefore, a complete MapReduce job consists of code for the mapper

work handles everything else.

it doesn’t precisely describe the Hadoop implementation.

\l/

v mapper mapper mapper mapper ‘/’
) (o) () Gt opsgouad 2

itioners in addi-

tion to mappers and reducers. Combiners can be viewed as “mini-reducers” in the map phase.

be copied over

of the mappers

are processed by the combiners, which perform local aggregation to cut down on the
number of intermediate key-value pairs. The partitioner determines which reducer will
be responsible for processing a particular key, and the execution framework uses this
information to copy the data to the right location during the shuffle and sort phase.'?

, reducer, com-

biner, and partitioner, along with job configuration parameters. The execution frame-

131n Hadoop, partitioners arc actually executed before combiners, so while Figure 2.4 is canceptually accurate,

3.1. LOCAL AGGREGATION 41

e Section 3.3 shows how co-occurrence counts can be converted into relative frequen-
cies using a pattern known as “order inversion”. The sequencing of computations
in the reducer can be recast as a sorting problem, where pieces of intermediate
data are sorted into exactly the order that is required to carry out a series of
computations. Often, a reducer needs to compute an aggregate statistic on a set
of elements before individual elements can be processed. Normally, this would re-
quire two passes over the data, but with the “order inversion” design pattern, the
aggregate statistic can be computed in the rediicer before the individual elements
are encountered. This may seem counter-intuitive: how can we compute an aggre-
gate statistic on a set of elements before encountering elements of that set? As it
turns out, clever sorting of special key-value pairs enables exactly this.

e Section 3.4 provides a general solution to secondary sorting, which is the problem
of sorting values associated with a key in the reduce phase. We call this technique
“value-to-key conversion”.

e Section 3.5 covers the topic of performing joins on relational datasets and presents
three different approaches: reduce-side, map-side, and memory-backed joins.

3.1 LOCAL AGGREGATION

In the context of data-intensive distributed processing, the single most important as-
pect of synchronization is the exchange of intermediate results, from the processes that
produced them to the processes that will ultimately consume them. In a cluster environ-
ment, with the exception of embarrassingly-parallel problems, this ne essarily involves
transferring data over the network. Furthermore, in Hadoop, intermediate results are
written to local disk before being sent over the network. Since network and disk laten-
cies are relatively expensive compared to other operations, reductions [in the amount of
intermediate data translate into increases in algorithmic efficiency. In MapReduce, local
aggregation of intermediate results is one of the keys to efficient algarithms. Through
use of the combiner and by taking advantage of the ability to preserve state across
multiple inputs, it is often possible to substantially reduce both the number and size of
key-value pairs that need to be shuffled from the mappers to the reducers.

3.1.1 COMBINERS AND IN-MAPPER COMBINING
We illustrate various techniques for local aggregation using the simple word count ex-
ample presented in Section 2.2. For convenience, Figure 3.1 repeats the pseudo-code of
the basic algorithm, which is quite simple: the mapper emits an intermediate key-value
pair for each term observed, with the term itself as the key and a value of one; reducers
sum up the partial counts to arrive at the final count.

T

42 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class MAPPER h (Q y (AOC{A 1y
2: method MAP(docid a,doc d) Ww@ ‘! ——

3: for all term t € do

4: EMIT(term ¢, count. 1)«

1: class REDUCER

2 method REDUCE(term ¢, counts [c1, ¢a, - . .])
3 sum «— 0 ==t —

4: for all count ¢ € counts [cy, ¢z, ...] do

5 sum «— sum + ¢

6

EMIT(term ¢, count sum)
*——'/.N

Figure 3.1: Pseudo-code for the basic word count algorithm in MapReduce (repeated from
Figure 2.3). ‘

The first technique for local aggregation is the combiner, already discussed in
Section 2.4. Combiners provide a general mechanism within the MapReduce framework
to reduce the amount of intermediate data generated by the mappers—recall that they
can be understood as “mini-reducers” that process the output of mappers. In this

example, the combiners aggregate term counts across the documents pr
map task. This results in a reduction in the number of intermediate key-
need to be shuffled across the network—from the order of total number
collection to the order of the number of unique terms in the collection.

An improvement on the basic algorithm is shown in Figure 3.2

ocessed by each
value pairs that
of terms in the

(the mapper is

modified but the reducer remains the same as in Figure 3.1 and therefore is not re-
peated). An associative array (i.e., Map in Java) is introduced inside| the mapper to
tally up term counts within a single document: instead of emitting a keay-value pair for
each term in the document, this version emits a key-value pair for each unique term in
the document. Given that some words appear frequently within a document (for exam-

ple, a document about dogs is likely to have many occurrences of the w

ord “dog”), this

can yield substantial savings in the number of intermediate key-value pairs emitted,

especially for long documents.

IMore precisely, if the combiners take advantage of all opportunities for local aggregation,
generate at most m X V intermediate key-value pairs, where m is the number of mapp
cabulary size (number of unique terms in the collection), since every term could have be
mapper. However, there are two additional factors to consider. Due to the Zipfian nature q
most terms will not be observed by most mappers (for example, terms that occur only on
only be observed by one mapper). On the other hand, combiners in Hadoop are treated a
tions, so there is no guarantee that the execution framework will take advantage of all opp
aggregation.

the algorithm would
rs and V' is the vo-
en observed in every
f term distributions,
ce will by definition
Is optional optimiza-
ortunities for partial

L
Ared)

S

3.1. LOCAL AGG

class MAPPER
method Map(docid a,doc d)
H «— new ASSOCIATIVEARRAY
for all term t € doc d do
H{t} — H{t} +1
for all term t € H do

1:
2
3
4:
5
6
7 EMIT(term ¢, count H{t})

> Tally counts for e

REGATION 43

ntire document

Figure 3.2: Pseudo-code for the improved MapReduce word count algorithm that uses an

associative array to aggregate term counts on a per-document basis. Reducer
Figure 3.1.

This basic idea can be taken one step further, as illustrated in th
word count algorithm in Figure 3.3 (once again, only the mapper is

is the same as in

e variant of the

modified). The

workings of this algorithm critically depends on the details of how map and reduce

tasks in Hadoop are executed, discussed in Section 2.6. Recall, a (Java)
is created for each map task, which is responsible for processing a blog
value pairs. Prior to processing any input key-value pairs, the mapp

mapper object
k of input key-
er’s INITIALIZE

method is called, which is an API hook for user-specified code. In this case, we initialize

an associative array for holding term counts. Since it is possible to prese

rve state across

multiple calls of the MAP method (for each input key-value pair), we can continue

to accumulate partial term counts in the associative array across mult

and emit key-value pairs only when the mapper has processed all docu
emission of intermediate data is deferred until the CLOSE method in t]
Recall that this API hook provides an opportunity to execute user-spes

the MAP method has been applied to all input key-value pairs of the
to which the map task was assigned.

With this technique, we are in essence incorporating combiner f

rectly inside the mapper. There is no need to run a separate combin
portunities for local aggregation are already exploited.? This is a suffi
design pattern in MapReduce that it’s worth giving it a name, “in-map
so that we can refer to the pattern more conveniently throughout the
later on how this pattern can be applied to a variety of problems. The
advantages to using this design pattern:

First, it provides control over when local aggregation occurs and
takes place. In contrast, the semantics of the combiner is underspecified

2Leaving aside the minor complication that in Hadoop, combiners can be run in the redu
merging intermediate key-value pairs from different map tasks). However, in practice
difference either way.

ple documents,
ments. That is,
he pseudo-code.
cified code after
nput data split

unctionality di-
er, since all op-
ciently common
per combining”,
book. We'll see
re are two main

how it exactly
in MapReduce.

ce phase also (when

it makes almost no

44 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN
1. class MAPPER

2 method INITIALIZE /

3 H «— new ASSOCIATIVEARRAY

4 method Map(docid a,doc d)

5: for all term t € doc d do

6

7

8

9

H{t} — H{t} +1 > Tally counts acfoss documents

<

method CLOSE
for all term t € H do

EMIT(term ¢, count H{t}) L%Y z
T

Figure 3.3: Pseudo-code for the improved MapReduce word count algorithm that demon-
strates the “in-mapper combining” design pattern. Reducer is the same as in Figure 3.1.

For example, Hadoop makes no guarantees on how many times the combiner is applied,
or that it is even applied at all. The combiner is provided as a semantics-preserving
optimization to the execution framework, which has the option of using it, perhaps
multiple times, or not at all (or even in the reduce phase). In some casgs (although not
in this particular example), such indeterminism is unacceptable, whichl is exactly why
programmers often choose to perform their own local aggregation in the mappers.
Second, in-mapper combining will typically be more efficient t using actual
combiners. One reason for this is the additional overhead associated with actually ma-
terializing the key-value pairs. Combiners reduce the amount of interm diate data that
is shuffled across the network, but don’t actually reduce the number of key-value pairs
that are emitted by the mappers in the first place. With the algorithm in Figure 3.2,
intermediate key-value pairs are still generated on a per-document basis, only to be
“compacted” by the combiners. This process involves unnecessary object creation and
destruction (garbage collection takes time), and furthermore, object erialization and
deserialization (when intermediate key-value pairs fill the in-memory buffer holding map
outputs and need to be temporarily spilled to disk). In contrast, with |in-mapper com-
bining, the mappers will generate only those key-value pairs that nedd to be shuffled
across the network to the reducers.
There are, however, drawbacks to the in-mapper combining pattern. First, it
breaks the functional programming underpinnings of MapReduce, since state is be-
ing preserved across multiple input key-value pairs. Ultimately, this isn’t a big deal,
since pragmatic concerns for efficiency often trump theoretical “purity”, but there are
practical consequences as well. Preserving state across multiple input instances means
that algorithmic behavior may depend on the order in which input key-value pairs are
encountered. This creates the potential for ordering-dependent bugs, which are difficult
to debug on large datasets in the general case (although the correctness of in-mapper

3.1. LOCAL AG

class MAPPER
method MAP(string ¢, integer r)
EMIT(string ¢, integer r)
—’_—"‘

S

class REDUCER
method REDUCE(string ¢, integers [rq, 72, ..

sum «— 0

ent — 0

for all integer r € integers [ry, 72, ..
sum «— sum —+1nr
cent «— ent + 1

Tavg < Sum/cnt

EMIT(string ¢, integer rqq,)

g

W B

1)
] do

X

Figure 3.4: Pseudo-code for the basic MapReduce algorithm that computes
associated with the same key.

of values associated with the same key, and the reducer would comp

those values. As a concrete example, we know that:

MEAN(MEAN

—

@mﬁm{&& 5)

In general, the mean of means of arbitrary subsets of a set of number
as the mean of the set of numbers. Therefore, this approach would
correct result.’

So how might we properly take advantage of combiners? An att

(1,2), MEAN(3,4,5)

Figure 3.5. The mapper remains the same, but we have added a combir

aggregates results by computing the numeric components necessary
mean. The combiner receives each string and the associated list of int

which it computes the sum of those values and the number of integers ¢

the count). The sum and count are packaged into a pair, and emitt

of the combiner, with the same string as the key. In the reducer, pair

and counts can be aggregated to arrive at the mean. Up until now, al
in our algorithms have been primitives (string, integers, etc.). Howe
prohibitions in MapReduce for more complex types,® and, in fact, this
technique in MapReduce algorithm design that we introduced at the

5There is, however, one special case in which using reducers as combiners would produc
each combiner computed the mean of equal-size subsets of the values. However, since sug¢
over the combiners is impossible in MapReduce, such a scenario is highly unlikely.

6In Hadoop, either custom types or types defined using a library such as Protocol Buffer.

GREGATION 47

the mean of values

ute the mean of

-

5 is not the same
not produce the

empt is shown in
ner that partially
to arrive at the
eger values, from
encountered (i.e.,
ed as the output
s of partial sums
| keys and values
ver, there are no
represents a key
beginning of this

e the correct result: if
h fine-grained control

, Thrift, or Avro.

48 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

. class MAPPER
method MAP(string ¢, integer r)
EMIT(string ¢, integer 7)

class COMBINER
method COMBINE(string ¢, integers [r1,72, . -

sum « 0

ent —0

for all integer r € integers [r1,T2, .-
sum «— sum+7r
ent «—cent + 1

EMIT(string t, pair (sum, cnt))

)

.| do

class REDUCER 0

method REDUCE(string ¢, pairs [(s1,¢1), (s2,¢2).--])

sum « 0

ent 0

for all pair (s,c) € pairs [(s1,¢1), (s2,¢2) - . do
sum «— sum + 8
cnt «—cnt + ¢

Tavg — Sum/cnt

EMIT(string t, integer 7ay,)

key-value types violates the MapReduce programming model.

this book.

are optimizations that cannot change the correctness of the algorithm.

so the reducer expects to receive a list of integers as values. But the
expects a list of pairs! The correctness of the algorithm is contingent

> Separate

the mean of values associated with each key. The mismatch between combiner

Unfortunately, this algorithm will not work. Recall that combiner
same input and output key-value type, which also must be the same
output type and the reducer input type. This is clearly not the case
why this restriction is necessary in the programming model, remember that combiners

the combiner and see what happens: the output value type of the m

running on the output of the mappers, and more specifically, that the
exactly once. Recall from our previous discussion that Hadoop makes 1

sum and count

Figure 3.5: Pseudo-code for an incorrect first attempt at introducing combiners to compute

input and output

chapter. We will frequently encounter complex keys and values throughput the rest of

s must have the
as the mapper
To understand

So let us remove
apper is integer,
reducer actually
on the combiner
combiner is run
no guarantees on

3.1. LOCAL AGGQG

1: class MAPPER
method MAP(string t, integer r)
EMIT(string ¢, pair (r, 1))

class COMBINER
method COMBINE(string t, pairs [(s1,¢1), (S2,¢2) .. .])

sum «— 0

cnt — 0

for all pair (s, c) € pairs [(s1,¢1), (S2,¢2)...] do
sum « sum + 8
cnt «+— cent + ¢

EMIT(string ¢, pair (sum, cnt))

class REDUCER
method REDUCE(string ¢, pairs [(s1, ¢1), (s2,¢2) . ..])

sum « 0

ent «— 0

for all pair (s,c) € pairs [(s1,¢1), (s2,¢2)...] do
sum «— sum + s
cnt «—cnt +c¢

Tavg < sum/cnt

EMIT(string ¢, integer 7,,4)

Figure 3.6: Pseudo-code for a MapReduce algorithm that computes the me
ciated with each key. This algorithm correctly takes advantage of combiners.

how many times combiners are called; it could be zero, one, or mult
violates the MapReduce programming model.

Another stab at the algorithm is shown in Figure 3.6, and this tim

is correct. In the mapper we emit as the value a pair consisting of
one—this corresponds to a partial count over one instance. The com

aggregates the partial sums and the partial counts (as before), and ¢

updated sums and counts. The reducer is similar to the combiner,
mean is computed at the end. In essence, this algorithm transforms a
operation (mean of numbers) into an associative operation (element-wi
of numbers, with an additional division at the very end).

Let us verify the correctness of this algorithm by repeating the p
What would happen if no combiners were run? With no combiners, the
send pairs (as values) directly to the reducers. There would be as ma
pairs as there were input key-value pairs, and each of those would cons

rREGATION 49

an of values asso-

iple times. This

e, the algorithm
the integer and
biner separately
mits pairs with
except that the
non-associative
se sum of a pair

revious exercise:
mappers would
ny intermediate
ist of an integer

50 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

class MAPPER
method INITIALIZE
S « new ASSOCIATIVEARRAY
C «— new ASSOCIATIVEARRAY
method MAP(string ¢, integer r)
S{t} — S{t}+r
C{t} —C{t} +1
method CLOSE
for all term t € S do
EMIT(term ¢, pair (S{t}, C{t}))

1
2
3
4:
5:
6
7
8
9

10:

Figure 3.7: Pseudo-code for a MapReduce algorithm that computes the meg
ciated with each key, illustrating the in-mapper combining design pattern. On

shown here; the reducer is the same as in Figure 3.6

and one. The reducer would still arrive at the correct sum and count
mean would be correct. Now add in the combiners: the algorithm would

no matter how many times they run, since the combiners merely aggregs
and counts to pass along to the reducers. Note that although the outpuf
of the combiner must be the same as the input key-value type of the redu

can emit final key-value pairs of a different type.

Finally, in Figure 3.7, we present an even more efficient algorithm t
in-mapper combining pattern. Inside the mapper, the partial sums and c
with each string are held in memory across input key-value pairs. Interm
pairs are emitted only after the entire input split has been processed; si
the value is a pair consisting of the sum and count. The reducer is exa
in Figure 3.6. Moving partial aggregation from the combiner directly i
is subjected to all the tradeoffs and caveats discussed earlier this sect
case the memory footprint of the data structures for holding intermedis
to be modest, making this variant algorithm an attractive option.

3.2 PAIRS AND STRIPES

One common approach for synchronization in MapReduce is to constru

n of values asso-
ly the mapper is

and hence the
remain correct,
ate partial sums
t key-value type
cer, the reducer

hat exploits the
bunts associated
ediate key-value
milar to before,
ctly the same as
nto the mapper
ion, but in this
wte data is likely

ct complex keys

and values in such a way that data necessary for a computation are naturally brought

together by the execution framework. We first touched on this techniquc
section, in the context of “packaging” partial sums and counts in a
(i.e., pair) that is passed from mapper to combiner to reducer. Buildiy

¢ in the previous

complex value

1g on previously

3.2. PAIRS A

published work [54, 94], this section introduces two common design p

dubbed “pairs” and “stripes” that exemplify this strategy.

As a running example, we focus on the problem of building wor
matrices from large corpora, a common task in corpus linguistics and st
language processing. Formally, the co-occurrence matrix of a corpus ig
matrix where n is the number of unique words in the corpus (i.e., the vog¢

cell m;; contains the number of times word w; co-occurs with word w;

context—a natural unit such as a sentence, paragraph, or a docume

window of m words (where m is an application-dependent parameter

upper and lower triangles of the matrix are identical since co-occurrenc
relation, though in the general case relations between words need not be
example, a co-occurrence matrix M where m,; is the count of how ma
was immediately succeeded by word j would usually not be symmetric.

This task is quite common in text processing and provides the s

many other algorithms, e.g., for computing statistics such as pointwi

mation [38], for unsupervised sense clustering [136], and more general

of work in lexical semantics based on distributional profiles of words

Firth [55] and Harris [69] in the 1950s and 1960s. The task also has ap
formation retrieval (e.g., automatic thesaurus construction [137] and s
and other related fields such as text mining. More importantly, this prc
a specific instance of the task of estimating distributions of discrete joi
large number of observations, a very common task in statistical natur
cessing for which there are nice MapReduce solutions. Indeed, concept

are also used in Chapter 6 when we discuss expectation-maximization

Beyond text processing, problems in many application domains sh
acteristics. For example, a large retailer might analyze point-of-sale tra

to identify correlated product purchases (e.g., customers who buy this
that), which would assist in inventory management and product pla

shelves. Similarly, an intelligence analyst might wish to identify assoc

re-occurring financial transactions that are otherwise unrelated, which
clue in thwarting terrorist activity. The algorithms discussed in this
adapted to tackle these related problems.

It is obvious that the space requirement for the word co-occurr
O(n?), where n is the size of the vocabulary, which for real-world Eng

be hundreds of thousands of words, or even billions of words in web-s

The computation of the word co-occurrence matrix is quite simple if

"The size of the vocabulary depends on the definition of a “word” and techniques (if

processing. One common strategy is to replace all rare words (below a certain frequen

token such as <UNK> (which stands for “unknown”) to model out-of-vocabulary word

involves replacing numeric digits with #, such that 1.32 and 1.19 both map to the same t

ND STRIPES 51

atterns we have

d co-occurrence
atistical natural
a square n X n
abulary size). A
within a specific
nt, or a certain
. Note that the
e is a symmetric
symmetric. For
ny times word ¢

tarting point to
se mutual infor-
ly, a large body
dating back to
plications in in-
temming [157]),
blem represents
nt events from a
al language pro-
s presented here
algorithms.

are similar char-
nsaction records
tend to also buy
cement on store
siations between
might provide a
section could be

ence problem is
lish corpora can
cale collections.”
he entire matrix

any) for corpus pre-
cy) with a “special”
. Another technique
oken (#.##).

¢

52 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

fits into memory—however, in the case where the matrix is too big to fit in memory,
a naive implementation on a single machine can be very slow as memary is paged to
disk. Although compression techniques can increase the size of corpora for which word
co-occurrence matrices can be constructed on a single machine, it is clear that there are
inherent scalability limitations. We describe two MapReduce algorithms for this task
that can scale to large corpora.

Pseudo-code for the first algorithm, dubbed the “pairs” approach, is shown in
Figure 3.8. As usual, document ids and the corresponding contents make up the input
key-value pairs. The mapper processes each input document and emits intermediate
key-value pairs with each co-occurring word pair as the key and the integer one (i.e.,
the count) as the value. This is straightforwardly accomplished by two nested loops:
the outer loop iterates over all words (the left element in the pair),| and the inner
loop iterates over all neighbors of the first word (the right element in|the pair). The
neighbors of a word can either be defined in terms of a sliding window or some other
contextual unit such as a sentence. The MapReduce execution framework guarantees
that all values associated with the same key are brought together in the reducer. Thus,
in this case the reducer simply sums up all the values associated with the same co-
occurring word pair to arrive at the absolute count of the joint event in the corpus,
which is then emitted as the final key-value pair. Each pair corresponds to a cell in the
word co-occurrence matrix. This algorithm illustrates the use of complex keys in order
to coordinate distributed computations.

An alternative approach, dubbed the “stripes” approach, is presented in Fig-
ure 3.9. Like the pairs approach, co-occurring word pairs are generated by two nested
loops. However, the major difference is that instead of emitting intermediate key-value
pairs for each co-occurring word pair, co-occurrence information is first stored in an
associative array, denoted H. The mapper emits key-value pairs with words as keys
and corresponding associative arrays as values, where each associative array encodes
the co-occurrence counts of the neighbors of a particular word (i.e., its context). The
MapReduce execution framework guarantees that all associative arrays with the same
key will be brought together in the reduce phase of processing. The reducer performs an
element-wise sum of all associative arrays with the same key, accumulating counts that
correspond to the same cell in the co-occurrence matrix. The final associative array is
emitted with the same word as the key. In contrast to the pairs approach, each final
key-value pair encodes a row in the co-occurrence matrix.

It is immediately obvious that the pairs algorithm generates an immense number
of key-value pairs compared to the stripes approach. The stripes repres¢ntation is much
more compact, since with pairs the left element is repeated for every co-occurring word
pair. The stripes approach also generates fewer and shorter intermediate keys, and
therefore the execution framework has less sorting to perform. However, values in the

3.2. PAIRS AND STRIPES 53

1: class MAPPER

2 method MAP(docid a, doc d)

3: for all term w € doc d do

4 for all term u € NEIGHBORS(w) do
5 EMIT(pair (w,u), count 1) > Emit count for each co-occurrence

1: class REDUCER

2 method REDUCE(pair p, counts [ci, ¢z, .. .])
3 s—20

4 for all count ¢ € counts [cy, ¢y, ...] do

5 s§+—s+c > Sum co-occurrence counts
6 EMIT(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs” approach for computing word co-oc¢urrence matrices
from large corpora.

1: class MAPPER

2 method MAP(docid a,doc d)

3 for all term w € doc d do

4: H « new ASSOCIATIVEARRAY

5 for all term v € NEIGHBORS(w) do
6 H{u} « H{u}+1 > Tally words co-occurring with w
7

EMmIT(Term w, Stripe H)

1: class REDUCER

2 method REDUCE(term w, stripes [Hy, Hy, H3,...])
3 H; « new ASSOCIATIVEARRAY

4 for all stripe H € stripes [H;, Ha, H3,...] do

5 Sum(Hy, H) > Element-wise sum

=3

EMIT(term w, stripe Hy)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices
from large corpora.

54 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

overhead than with the pairs approach.

ulary with itself, which is far larger—counts can be aggregated only

less likely than observing multiple occurrences of a word, as in the stri

proach due to the sparsity of the intermediate key space. The sparsity

will also be more complex than in the simple word count example. For
periodically flush in-memory structures.
The stripes approach makes the assumption that, at any point in time,
array is small enough to fit into memory—otherwise, memory paging

impact performance. The size of the associative array is bounded by the

Heap’s Law). Therefore, as the sizes of corpora increase, this will becom|

intermediate data in memory.

published results [94] that empirically answered this question. We hz
both algorithms in Hadoop and applied them to a corpus of 2.27 m
from the Associated Press Worldstream (APW) totaling 5.7 GB.®

8This was a subset of the English Gigaword corpus (version 3) distributed by the Lingui
(LDC catalog number LDC2007T07).

stripes approach are more complex, and come with more serialization and

Both algorithms can benefit from the use of combiners, since the r
ations in their reducers (addition and element-wise sum of associative a
commutative and associative. However, combiners with the stripes appr
opportunities to perform local aggregation because the key space is th
associative arrays can be merged whenever a word is encountered mu
a mapper. In contrast, the key space in the pairs approach is the cross of the vocab-

also limits the effectiveness of in-memory combining, since the mapper
memory to store partial counts before all documents are processed, neg
mechanism to periodically emit key-value pairs (which further limits opportunities to
perform partial aggregation). Similarly, for the stripes approach, mema

pressing issue—perhaps not for gigabyte-sized corpora, but certainly f¢
and petabyte-sized corpora that will be commonplace tomorrow. The
on the other hand, does not suffer from this limitation, since it does 1

Given this discussion, which approach is faster? Here, we pre
ave implemented
illion documents
°rior to working

deserialization

espective oper-
rrays) are both
bach have more
e vocabulary—
ltiple times by

when the same

co-occurring word pair is observed multiple times by an individual mapper (which is

pes case).

For both algorithms, the in-mapper combining optimization discussed in the pre-
vious section can also be applied; the modification is sufficiently straightforward that
we leave the implementation as an exercise for the reader. However, the above caveats
remain: there will be far fewer opportunities for partial aggregation 1

n the pairs ap-
of the key space
may run out of
essitating some

ry management
common terms,

the associative array may grow to be quite large, necessitating some mechanism to

It is important to consider potential scalability bottlenecks of either algorithm.

each associative
will significantly
vocabulary size,

which is itself unbounded with respect to corpus size (recall the previous discussion of

e an increasingly
or terabyte-sized
pairs approach,
not need to hold

sent previously-

stic Data Consortium

