
B .  R A M A M U R T H Y

Big-data Computing: Hadoop 
Distributed File System

2/27/2018cse4/587

1



Reference

 Apache Hadoop: http://hadoop.apache.org/

 http://wiki.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White, 2nd

edition, Oreilly’s , 2010

 Dean, J. and Ghemawat, S. 2008. MapReduce: 
simplified data processing on large clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-113.

 B. Hedlund’s blog: 
http://bradhedlund.com/2011/09/10/understandin
g-hadoop-clusters-and-the-network/

2/27/2018

2

cse4/587

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/
http://labs.google.com/papers/mapreduce-osdi04.pdf
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/


Background

 Problem space is experiencing explosion of data

 Solution space: emergence of multi-core, 
virtualization, cloud computing

 Inability of traditional file system to handle data 
deluge

 The Big-data Computing Model

• MapReduce Programming Model (Algorithm)

• Google File System; Hadoop Distributed File System (Data 
Structure)

• Microsoft Dryad ( Large scale Data-base processing model)

3

2/27/2018cse4/587



Examples

 Computational models that focus on data: 
large scale and/or complex data

 Example1: web log
fcrawler.looksmart.com - - [26/Apr/2000:00:00:12 -0400] "GET /contacts.html HTTP/1.0" 200 4595 "-" "FAST-WebCrawler/2.1-pre2 (ashen@looksmart.net)"

fcrawler.looksmart.com - - [26/Apr/2000:00:17:19 -0400] "GET /news/news.html HTTP/1.0" 200 16716 "-" "FAST-WebCrawler/2.1-pre2 (ashen@looksmart.net)"

ppp931.on.bellglobal.com - - [26/Apr/2000:00:16:12 -0400] "GET /download/windows/asctab31.zip HTTP/1.0" 200 1540096 
"http://www.htmlgoodies.com/downloads/freeware/webdevelopment/15.html" "Mozilla/4.7 [en]C-SYMPA  (Win95; U)"

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/wpaper.gif HTTP/1.0" 200 6248 "http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET /asctortf/ HTTP/1.0" 200 8130 
"http://search.netscape.com/Computers/Data_Formats/Document/Text/RTF" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/5star2000.gif HTTP/1.0" 200 4005 "http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I; 
PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:50 -0400] "GET /pics/5star.gif HTTP/1.0" 200 1031 "http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:51 -0400] "GET /pics/a2hlogo.jpg HTTP/1.0" 200 4282 "http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I; PPC)"

123.123.123.123 - - [26/Apr/2000:00:23:51 -0400] "GET /cgi-bin/newcount?jafsof3&width=4&font=digital&noshow HTTP/1.0" 200 36 
"http://www.jafsoft.com/asctortf/" "Mozilla/4.05 (Macintosh; I; PPC)"

 Example 2: Climate/weather data  modeling

2/27/2018

4

cse4/587

http://www.htmlgoodies.com/downloads/freeware/webdevelopment/15.html
http://www.jafsoft.com/asctortf/
http://search.netscape.com/Computers/Data_Formats/Document/Text/RTF
http://www.jafsoft.com/asctortf/
http://www.jafsoft.com/asctortf/
http://www.jafsoft.com/asctortf/
http://www.jafsoft.com/asctortf/


Traditional Storage Solutions

Off system/online 
storage/ 

secondary 
memory

File system 
abstraction/ 
Databases

Offline/ tertiary 
memory/ DFS

RAID: Redundant 
Array of 

Inexpensive Disks 

NAS: Network 
Accessible Storage

SAN: Storage area 
networks

5

2/27/2018cse4/587



Solution Space 

cse4/587 2/27/2018

6



Google File System

• Internet introduced a new challenge in the form web 
logs, web crawler’s data: large scale “peta scale”

• But observe that this type of data has an uniquely 
different characteristic than your transactional or the 
“customer order” data : “write once read many 
(WORM)” ; 
• Privacy protected healthcare and patient information; 

• Historical financial data; 

• Other historical data 

• Google exploited this characteristics in its Google file 
system (GFS)

7

2/27/2018cse4/587



Hadoop

 Projects Nutch and Lucene were started with 
“search” as the application in mind; 

 Hadoop Distributed file system and mapreduce were 
found to have applications beyond search.

 HDFS and MapReduce were moved out of Nutch as a 
sub-project of Lucene and later promoted into a 
apache project Hadoop

 Lets look at HDFS as in Hadoop 1.0: You have to 
understand the basics of Hadoop1.0 to understand 
and appreciate its evolution to Hadoop 2.0

2/27/2018cse4/587

8



Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 HDFS provides Java API for applications to use.

 It also provides a streaming API for other languages.

 (See MR in python here)

 A HTTP browser can be used to browse the files of a 
HDFS instance.

2/27/2018

9

cse4/587

http://hadoop.apache.org/docs/current/api/
http://hadoop.apache.org/docs/r0.20.2/streaming.html
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/


Hadoop

CSE4/587 B. Ramamurthy 2/27/2018

10



Hadoop

2/27/2018CSE4/587 B. Ramamurthy

11



What has changed? Hmm…

2/27/2018CSE4/587 B. Ramamurthy

12

We moved from “running” on Hadoop DFS to 
“running” in Hadoop operating system “YARN”



Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 HDFS core principles are the same in both major releases of Hadoop.

•

2/27/2018

13

CSE4/587 B. Ramamurthy



Hadoop Distributed File System

2/27/2018

14

Application

Local file 
system

Masters: Job tracker, 
Name node, 
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CSE4/587 B. Ramamurthy



From Brad Hedlund: a very nice picture

2/27/2018CSE4/587 B. Ramamurthy

15



Hadoop (contd.)

 What are : Job tracker, Name node, Secondary name 
node, data node, task tracker…?

 What are their roles?

2/27/2018CSE4/587 B. Ramamurthy

16



Architecture

2/27/2018

17

cse4/587



Namenode and Datanodes

 Master/slave architecture
 HDFS cluster consists of a single Namenode, a master server that 

manages the file system namespace and regulates access to files by 
clients.

 There are a number of DataNodes usually one per node in a 
cluster.

 The DataNodes manage storage attached to the nodes that they run 
on.

 HDFS exposes a file system namespace and allows user data to be 
stored in files.

 A file is split into one or more blocks and set of blocks are stored in 
DataNodes.

 DataNodes: serves read, write requests, performs block creation, 
deletion, and replication upon instruction from Namenode.

2/27/2018

18

cse4/587



HDFS Architecture

2/27/2018

19

Namenode

B
replication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/foo/data,6. ..

Block ops

cse4/587



File system Namespace

2/27/2018

20

 Hierarchical file system with directories and files

 Create, remove, move, rename etc.

 Namenode maintains the file system

 Any meta information changes to the file system 
recorded by the Namenode.

 An application can specify the number of replicas of 
the file needed: replication factor of the file. This 
information is stored in the Namenode.

cse4/587



Data Replication

2/27/2018

21

 HDFS is designed to store very large files across 
machines in a large cluster.

 Each file is a sequence of blocks.

 All blocks in the file except the last are of the same 
size.

 Blocks are replicated for fault tolerance.

 Block size and replicas are configurable per file.

 The Namenode receives a Heartbeat and a 
BlockReport from each DataNode in the cluster.

 BlockReport contains all the blocks on a Datanode.

cse4/587



Replica Placement

2/27/2018

22

 The placement of the replicas is critical to HDFS reliability and performance.

 Optimizing replica placement distinguishes HDFS from other distributed file systems.

 Rack-aware replica placement: 

 Goal: improve reliability, availability and network bandwidth utilization

 Many racks, communication between racks are through switches.

 Network bandwidth between machines on the same rack is greater than those in different 
racks.

 Namenode determines the rack id for each DataNode.

 Replicas are typically placed on unique racks 

 Simple but non-optimal

 Writes are expensive

 Replication factor is 3

 Replicas are placed: one on a node in a local rack, one on a different node in the local 
rack and one on a node in a different rack.

 1/3 of the replica on a node, 2/3 on a rack and 1/3 distributed evenly across remaining 
racks.

cse4/587



Replica Selection 

2/27/2018

23

 Replica selection for READ operation: HDFS tries to 
minimize the bandwidth consumption and latency.

 If there is a replica on the Reader node then that is 
preferred.

 HDFS cluster may span multiple data centers: 
replica in the local data center is preferred over the 
remote one.

cse4/587



Safemode Startup

2/27/2018

24

 On startup Namenode enters Safemode. 
 Replication of data blocks do not occur in Safemode.
 Each DataNode checks in with Heartbeat and 

BlockReport.
 Namenode verifies that each block has acceptable 

number of replicas
 After a configurable percentage of safely replicated 

blocks check in with the Namenode, Namenode exits 
Safemode.

 It then makes the list of blocks that need to be replicated.
 Namenode then proceeds to replicate these blocks to 

other Datanodes.

cse4/587



Filesystem Metadata

2/27/2018

25

 The HDFS namespace is stored by Namenode.

 Namenode uses a transaction log called the EditLog 
to record every change that occurs to the filesystem 
meta data.

 For example, creating a new file.

 Change replication factor of a file

 EditLog is stored in the Namenode’s local filesystem

 Entire filesystem namespace including mapping of 
blocks to files and file system properties is stored in a 
file FsImage. Stored in Namenode’s local filesystem.

cse4/587



Namenode 

2/27/2018

26

 Keeps image of entire file system namespace and file 
Blockmap in memory.

 4GB of local RAM is sufficient to support the above data 
structures that represent the huge number of files and 
directories.

 When the Namenode starts up it gets the FsImage and 
Editlog from its local file system, update FsImage with 
EditLog information and then stores a copy of the 
FsImage on the filesytstem as a checkpoint.

 Periodic checkpointing is done. So that the system can 
recover back to the last checkpointed state in case of a 
crash.

cse4/587



Datanode

2/27/2018

27

 A Datanode stores data in files in its local file system.

 Datanode has no knowledge about HDFS filesystem

 It stores each block of HDFS data in a separate file.

 Datanode does not create all files in the same directory.

 It uses heuristics to determine optimal number of files 
per directory and creates directories appropriately: 

 When the filesystem starts up it generates a list of all 
HDFS blocks and send this report to Namenode: 
Blockreport. 

cse4/587



Protocol

2/27/2018

28

cse4/587



The Communication Protocol

2/27/2018

29

 All HDFS communication protocols are layered on top of 
the TCP/IP protocol

 A client establishes a connection to a configurable TCP 
port on the Namenode machine. It talks ClientProtocol
with the Namenode.

 The Datanodes talk to the Namenode using Datanode 
protocol.

 RPC abstraction wraps both ClientProtocol and 
Datanode protocol.

 Namenode is simply a server and never initiates a 
request; it only responds to RPC requests issued by 
DataNodes or clients. 

cse4/587



Robustness

2/27/2018

30

cse4/587



Possible Failures

 Primary objective of HDFS is to store data reliably in 
the presence of failures.

 Three common failures are: Namenode failure, 
Datanode failure and network partition.

2/27/2018

31

cse4/587



DataNode failure and heartbeat

 A network partition can cause a subset of Datanodes 
to lose connectivity with the Namenode.

 Namenode detects this condition by the absence of a 
Heartbeat message.

 Namenode marks Datanodes without Hearbeat and 
does not send any IO requests to them.

 Any data registered to the failed Datanode is not 
available to the HDFS.

 Also the death of a Datanode may cause replication 
factor of some of the blocks to fall below their 
specified value.

2/27/2018

32

cse4/587



Re-replication

 The necessity for re-replication may arise due to:

 A Datanode may become unavailable,

 A replica may become corrupted, 

 A hard disk on a Datanode may fail, or

 The replication factor on the block may be increased.

2/27/2018

33

cse4/587



Cluster Rebalancing

 HDFS architecture is compatible with data 
rebalancing schemes.

 A scheme might move data from one Datanode to 
another if the free space on a Datanode falls below a 
certain threshold.

 In the event of a sudden high demand for a 
particular file, a scheme might dynamically create 
additional replicas and rebalance other data in the 
cluster.

 These types of data rebalancing are not yet 
implemented: research issue.

2/27/2018

34

cse4/587



Data Integrity

 Consider a situation: a block of data fetched from 
Datanode arrives corrupted.

 This corruption may occur because of faults in a 
storage device, network faults, or buggy software.

 A HDFS client creates the checksum of every block of 
its file and stores it in hidden files in the HDFS 
namespace. 

 When a clients retrieves the contents of file, it 
verifies that the corresponding checksums match.

 If does not match, the client can retrieve the block 
from a replica.

2/27/2018

35

cse4/587



Metadata Disk Failure

 FsImage and EditLog are central data structures of HDFS.

 A corruption of these files can cause a HDFS instance to be 
non-functional. 

 For this reason, a Namenode can be configured to maintain 
multiple copies of the FsImage and EditLog.

 Multiple copies of the FsImage and EditLog files are 
updated synchronously.

 Meta-data is not data-intensive.

 The Namenode could be single point failure: automatic 
failover has been recently added with a backup namenode.

2/27/2018

36

cse4/587



Data Organization

2/27/2018

37

cse4/587



Data Blocks

 HDFS support write-once-read-many with reads at 
streaming speeds.

 A typical block size is 64MB (or even 128 MB).

 A file is chopped into 64MB chunks and stored.

2/27/2018

38

cse4/587



Staging

 A client request to create a file does not reach 
Namenode immediately.

 HDFS client caches the data into a temporary file. 
When the data reached a HDFS block size the client 
contacts the Namenode.

 Namenode inserts the filename into its hierarchy and 
allocates a data block for it.

 The Namenode responds to the client with the 
identity of the Datanode and the destination of the 
replicas (Datanodes) for the block.

 Then the client flushes it from its local memory.
2/27/2018

39

cse4/587



Staging (contd.)

 The client sends a message that the file is closed.

 Namenode proceeds to commit the file for creation 
operation into the persistent store.

 If the Namenode dies before file is closed, the file is 
lost.

 This client side caching is required to avoid network 
congestion; also it has precedence is AFS (Andrew 
file system).

2/27/2018

40

cse4/587



Replication Pipelining

 When the client receives response from Namenode, 
it flushes its block in small pieces (4K)  to the first 
replica, that in turn copies it to the next replica and 
so on.

 Thus data is pipelined from Datanode to the next.

2/27/2018

41

cse4/587



API (Accessibility)

2/27/2018

42

cse4/587



FS Shell, Admin and Browser Interface

 HDFS organizes its data in files and directories.

 It provides a command line interface called the FS 
shell that lets the user interact with data in the 
HDFS.

 The syntax of the commands is similar to bash and 
csh.

 Example: to create a directory  /foodir

/bin/hadoop dfs –mkdir /foodir

 There is also DFSAdmin interface available

 Browser interface is also available to view the 
namespace.

2/27/2018

43

cse4/587



Space Reclamation

 When a file is deleted by a client, HDFS renames file to a 
file in be the /trash directory for a configurable amount of 
time.

 A client can request for an undelete in this allowed time.

 After the specified time the file is deleted and the space is 
reclaimed.

 When the replication factor is reduced, the Namenode 
selects excess replicas that can be deleted.

 Next heartbeat transfers this information to the Datanode 
that clears the blocks for use.

2/27/2018

44

cse4/587



MapReduce Engine

2/27/2018

45

cse4/587



C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1>
<key, value>pair Reducers (say, Count)

P-0000  

P-0001 

P-0002  

, count1

, count2

,count3

2/27/201846cse4/587



MapReduce Engine

 MapReduce requires a distributed file system and an 
engine that can distribute, coordinate, monitor and 
gather the results.

 Hadoop provides that engine through (the file 
system we discussed earlier) and the JobTracker + 
TaskTracker system. 

 JobTracker is simply a scheduler. 

 TaskTracker is assigned a Map or Reduce (or other 
operations); Map or Reduce run on node and so is 
the TaskTracker; each task is run on its own JVM on 
a node.

2/27/2018

47

cse4/587



Job Tracker

 Is a service with Hadoop system

 It is like a scheduler

 Client application is sent to the JobTracker

 It talks to the Namenode, locates the TaskTracker near the 
data (remember the data has been populated already).

 JobTracker moves the work to the chosen TaskTracker 
node.

 TaskTracker monitors the execution of the task and updates 
the JobTracker through heartbeat. Any failure of a task is 
detected through missing heartbeat.

 Intermediate merging on the nodes are also taken care of 
by the JobTracker

2/27/2018

48

cse4/587



TaskTracker

 It accepts tasks (Map, Reduce, Shuffle, etc.) from 
JobTracker

 Each TaskTracker has a number of slots for the 
tasks; these are execution slots available on the 
machine or machines on the same rack;

 It spawns a sepearte JVM for execution of the tasks;

 It indicates the number of available slots through the 
hearbeat message to the JobTracker

2/27/2018

49

cse4/587



Summary

 We discussed the features of the Hadoop File 
System, a peta-scale file system to handle big-data 
sets.

 We discussed: Architecture, Protocol, API, etc. 

 Also MapReduce Engine, Application Architecture

 Next task is to understand mapreduce and 
implement a simple mapreduce job on HDFS

2/27/2018

50

cse4/587


