An Innovative Approach to
Parallel Processing Data

CSE4/587 B. Ramamurthy

Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)
Google collects 270PB data in a month (2007), 20PB a day (2008) ...
2010 census data is a huge gold mine of information

Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

We are in a knowledge economy.

Data 1s an important asset to any organization

Discovery of knowledge; Enabling discovery; annotation of data
We are looking at newer

programming models, and

Supporting algorithms and data structures

National Science Foundation refers to it as “data-intensive computing”
and industry calls it “big-data” and “cloud computing”

Rear Admiral Grace Hopper: “In pioneer days they
used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger
ox. We shouldn't be trying for bigger computers, but
for more systems of computers.”

---From the Wit and Wisdom of Grace Hopper
(1906-1992),

http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html

Text processing: web-scale corpora (singular corpus)
Simple word count, cross reference, n-grames, ...

A simpler technique on more data beat a more
sophisticated technique on less data.

Google researchers call this: “unreasonable
effectiveness of data”

--Alon Halevy, Peter Norvig, and Fernando Pereira.
The unreasonable effectiveness of data.
Communications of the ACM, 24(2):8:12, 2009.

MapReduce

2/19/2018 CSE4/587 B. Ramamurthy

MapReduce is a programming model Google has used
successfully in processing its “big-data” sets (~ 20 peta
bytes per day in 2008)
Users specify the computation in terms of a map and a
reduce function,

Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and

Underlying system also handles machine failures,
efficient communications, and performance issues.
-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:

simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

Big idea behind MR

» Scale-out and not scale-up: Large number of
commodity servers as opposed large number of high
end specialized servers

Economies of scale, ware-house scale computing
MR is designed to work with clusters of commodity servers
Research issues: Read Barroso and Holzle’s work

* Failures are norm or common:

With typical reliability, MTBF of 1000 days (about 3 years), if
you have a cluster of 1000, probability of at least 1 server
failure at any time is nearly 100%

Moving “processing” to the data: not literally, data
and processing are co-located versus sending data
around as in HPC

Process data sequentially vs random access:
analytics on large sequential bulk data as opposed to
search for one item in a large indexed table

Hide system details from the user application:
user application does not have to get involved in which
machine does what. Infrastructure can do it.

Seamless scalability: Can add machines / server
power without changing the algorithms: this is in-order
to process larger data set

How to break large problem into smaller problems?
Decomposition for parallel processing

How to assign tasks to workers distributed around the
cluster?

How do the workers get the data?
How to synchronize among the workers?
How to share partial results among workers?

How to do all these in the presence of errors and
hardware failures?

MR is supported by a distributed file system that
addresses many of these aspects.

Fundamental concept:

Kely-value pairs form the basic structure of MapReduce <key,
value>

Key can be anything from a simple data types (int, float, etc)
to file names to custom types.

Examples:
<docid, docitself>
<yourName, yourLifeHistory>
<graphNode, nodeCharacteristicsComplexData>
<yourld, yourFollowers>
<word, itsNumofOccurrences>
<planetName, planetInfo>
<geneNum, <{pathway, geneExp, proteins}>
<Student, stuDetails>

Consider a large data collection:

{web, weed, green, sun, moon, land, part, web,
green,...}

Problem: Count the occurrences of the different words
in the collection.

Lets design a solution for this problem:;
We will start from scratch
We will add and relax constraints

We will do incremental design, improving the solution for
performance and scalability

Word Counter and Result Table

Data
collection

o)

DataCollection ResultTable

\ \

CSE4/587 B. Ramamurthy

Multiple Instances of Word Counter

Data
collection

Main
¢
1.*

SEam)

DataCollection ResultTable

CSE4/587 B. Ramamurthy

Improve Word Counter for Performance

'l‘ \lNo need for lock

Main (W
\ “}lb 2
Data
collection
___________ SRE
\
\
\ Thread
\
\ 1..*
\ 1..*V
\ Parser Counter
\
\
! S
: eparate counters
Y DataCollection WordList ResultTable p
|
|
|
\ 4
KEY web | weed green | sun moon | land part web green |
VALUE |
[

N N
5 =
) 3 9
2 y &
= Bb
o o
=] 2
ae] kS
+ =
qe! 2
o <
5]
- g
D -
_ =
S =
) -
! = o 3 S
qv! = = Sl[l--->F
A V g
— w 7
(7]
£ 2
[
S e
I3})
ko)
>
3 o
T (]
o (D)
2
_ - S 4
// - - = /—_ m
| = \
__.. a om
| =i 2
i (aD} ot
S ERE

h
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Single machine cannot serve all the data: you need a distributed
special (file) system

Larﬁe number of commodity hardware disks: say, 1000 disks 1TB
eac

Issue: With Mean time between failures (MTBF) or failure rate of
1/1000, then at least 1 of the above 1000 disks would be down at a
given time.

Thus failure is norm and not an exception.
File system has to be fault-tolerant: replication, checksum
Data transfer bandwidth is critical (location of data)

Critical aspects: fault tolerance + replication + load balancing,
monitoring

Exploit parallelism afforded by splitting parsing and counting
Provision and locate computing at data locations

N N
5 =
) 3 9
2 y &
= Bb
o o
=] 2
ae] kS
+ =
qe! 2
o <
5]
- g
D -
_ =
S =
) -
! = o 3 S
qv! = = Sl[l--->F
A V g
— w 7
(7]
£ 2
[
S e
I3})
ko)
>
3 o
T (]
o (D)
2
_ - S 4
// - - = /—_ m
| = \
__.. a om
| =i 2
i (aD} ot
S ERE

h
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

- ~.

~. -

Issue: managing the

Data Peta Scale Data is Commonly Distributed
collection
“““““ Data web 2
S et
::'5:::::::::}_‘: green | 2
s -
collection
_____________________ moon 1
’__________'_'_'_'_'_'_'_'_'_‘_ ____________ / Thread
Data . oV ,.
collection Parserlll Counter
Data DataCollection WordList ResultTable
collection |
________________________________ |
| large scale data
v
KEY web | weed green | sun moon | land part web green |

VALUE

2s ~.

~. -

Data Write Once Read Many (WORM) data
collection I
""""""""""""""""""" Main
Data web 2
coTection [i
green | 2
- -
collection
_____________________________ moon 1
e / Thread
Data oV
S 1.*
COlleCtlon Parser Counter
Data DataCollection WordList ResultTable
collection |
________________________________ I
|
v
KEY web | weed green | sun moon | land part web green |

VALUE

- ~~

S~ -

g

- ~

S~ -

.

- ~

S~ -

.

- ~

S~ -

.

- ~

S~ -

Parser

1.*

DataCollection

.

Main

Thread

oV

1.*

Counter

WordList

ResultTable

1.

Data with WORM
characteristics : yields
to parallel processing;
Data without
dependencies: yields
to out of order
processing

oy
-

. ~“s7 For our example,
% #1: Schedule parallel parse tasks
4 #2 Schedule parallel count tasks

A

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input - <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

' Runtime adds distribution + fault

tolerance + replication + monitoring +
load balancing to your base application!

Mapper and Reducer

CSE4/587 B. Ramamurthy

Map Operation

weed

MAP: Input data = <key, value> pair weed

‘ weed

1
1
1
1
1

1
1
1
1
1
1
1
1
1

Data

Collection: split1 Split the data to
Supply multiple

processors

Data
Collection: split 2

Data

Collection: o1t 1

CSE4/587 B. Ramamurthy

2/19/2018

MapReduce Example #2

CSE4/587 B. Ramamurthy

(= >
e >
(e >

barrier

partO

partl

—_

part2

You focus on Map function, Reduce function and other related
functions like combiner etc.

Mapper and Reducer are designed as classes and the function
defined as a method.

Configure the MR “Job” for location of these functions,
location of input and output (paths within the local server),
scale or size of the cluster in terms of #maps, # reduce etc.,
run the job.

Thus a complete MapReduce job consists of code for the
mapper, reducer, combiner, and partitioner, along with job
configuration parameters. The execution framework
hand%es everything else.

The way we configure has been evolving with versions of
hadoop.

1: class Mapper

2: method Map(docid a; doc d)
3: forall termtin docd do

4 Emit(term t; count 1)

1: class Reducer

2) method Reduce(term t; counts [c1; c2; : : :])
3 sum = O

4: for all count c in counts [c1; c2; : : :] do

5 sum = sum + ¢

6 Emit(term t; count sum)

This is a cat
Cat sits on a roof

The roof is a tin roof
There is a tin can on the roof

Cat kicks the can
It rolls on the roof and falls on the next roof

The cat rolls too
It sits on the can

Problem: Count the word frequency. Include all the words. We will worry
about stop words and stemming later.

This is a cat
Cat sits on a roof
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>

The roof is a tin roof
There is a tin can on the roof

<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on
1><the 1> <roof 1>

Cat kicks the can
It rolls on the roof and falls on the next roof

<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls
1><on 1> <the 1> <next 1> <roof 1>

The cat rolls too
It sits on the can
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>

<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on 1><the 1>
<roof 1>

<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1><on 1>
<the 1> <next 1> <roof 1>

<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the reducer: delivered sorted... By key

<can <1, 1>>
<cat <1,1,1,1>>

<roof <1,1,1,1,1,1>>

Reduce (sum in this case) the counts: comes out sorted!!!

<can 2>
<cat 4>

<roof 6>

All Mappers work in parallel.

Barriers enforce all mappers completion before
Reducers start.

Mappers and Reducers typically execute on the same
machine

You can configure job to have other combinations
besides Mapper/Reducer: ex: identify
mappers/reducers for realizing “sort” (that happens
to be a Benchmark)

Mappers and reducers can have side effects; this
allows for sharing information between iterations.

Very large scale data: peta, exa bytes

Write once and read many data: allows for parallelism
without mutexes

Map and Reduce are the main operations: simple code

There are other supporting operations such as combine
and partition: we will look at those later.

Operations are provisioned near the data.
Commodity hardware and storage.

Runtime takes care of splitting and moving data for
operations.

Special distributed file system: Hadoop Distributed File
System and Hadoop Runtime.

Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.

Simple algorithms such as grep, text-indexing, reverse
indexing

Bayesian classification: data mining domain

Facebook uses it for various operations: demographics
Financial services use it for analytics

Astronomy: Gaussian analysis for locating extra-terrestrial
objects.

Expected to play a critical role in semantic web and web3.0

Scope of MapReduce

Data size: small

. 1) Si
Pipelined Instruction level &

Concurrent Thread lev

Service Object leve

Indexed File le

Data size: large

CSE4/587 B. Ramamurthy 2/19/2018

Map function maps one <key,value> space to another. One to
many: “expand” or “divide”

Reduce does that too. But many to one: “merge”

There can be multiple “maps” in a single machine...

Each mapper(map) runs parallel with and independent of the
other (think of a bee hive§)

All the outputs from mappers are collected and the “key
space” is partitioned among the reducers. (what do you need
to partition?)

Now the reducers take over. One reduce/per key (by default)

Reduce operation can be anything.. Does not have to be just
counting...(operation [list of items]) — You can do magic with
this concept.

2/19/2018 CSE4/587 B. Ramamurthy

At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.

GFS is not open source.

Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).

The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.

This is open source and distributed by Apache.

Hadoop

Hadoop 1.0 Hadoop 2.0

2013/14

CSE4/587 B. Ramamurthy 2/19/2018

What has changed? Hmm...

CSE4/587 B. Ramamurthy

Highly fault-tolerant

High throughput

Suitable for applications with large data sets

Streaming access to file system data

Can be built out of commodity hardware

HDFS core principles are the same in both major releases of Hadoop.

Hadoop Distributed File System
®

- ~—
- ~

- N

- S

HDFS Server —=| Masters: Job tracker,
—| Name node,
Secondary name node
HDFS Client
E\""L'é'éél"fﬂ'é"ﬂi =SS =SS ===
. system | = ——— ———
Block size: 2K

Slaves: Task tracker, Data Nodes

=
~. -
~~~~~~~

Block size: 128 M
Replicated

CSE4/587 B. Ramamurthy 2/19/2018




Hadoop Distributed File System

)

——————

- ~

- .
e S

HDFS Server —l—=| Masters: Job tracker,
—| Name node,

Secondary name node
HDFS Client

] e = = 0008 e = = —_— e = =
= - e — ——— === =
- Localfile — = ———
__system | ——— ——— ———
Block size: 2K ==

Slaves: Task tracker, Data Nodes

=
~. -
~~~~~~~

Block size: 128 M
Replicated

CSE4/587 B. Ramamurthy 2/19/2018

From Brad Hedlund: a very nice picture
7\

Hadoop Cluster

q 2

wi”‘i—(
/

a \

P ~

TN\ S=
— /_/_ - - < | T T
e ____——-‘___-__ _'_,_,_,-'-"""'-f - | ___‘"——_._______ "'--..______
" - - T T
''_:,.:-_"'_:F:::F—'___ /.{__ _'_'_,_,.,-'-""-f #.,f_ \ | _____-_‘_‘-?:h:__""'ﬁ-\.__
m switch switch switch m

Mame Node Job Tracker Secondary NN Client DN+ TT
DM+ TT

DM+ TT DN+TT DN+TT DM+ TT O o o DN+TT
DM+ TT DN+TT DN+TT DM+ TT DN+TT
DM+ TT DN+TT DN+TT DM+ TT DN+TT
DM+ TT DN+TT DN+TT DM+ TT DN+TT
Rack 1 Rack 2 Rack 3 Rack 4 Rack N

ERAD HEDLUND .com

What are : Job tracker, Name node, Secondary name
node, data node, task tracker...?

What are their roles?

Before we discuss those: lets look a demo of
mapreduce on Hadoop MapReduce

