
B I N A R A M A M U R T H Y
P A R T I A L L Y S U P P O R T E D B Y

N S F D U E G R A N T : 0 7 3 7 2 4 3 , 0 9 2 0 3 3 5

An Innovative Approach to
Parallel Processing Data

2/19/2018CSE4/587 B. Ramamurthy

1

The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20PB a day (2008) …

 2010 census data is a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer

 programming models, and

 Supporting algorithms and data structures

 National Science Foundation refers to it as “data-intensive computing”
and industry calls it “big-data” and “cloud computing”

2/19/2018

2

CSE4/587 B. Ramamurthy

More context

 Rear Admiral Grace Hopper: “In pioneer days they
used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger
ox. We shouldn't be trying for bigger computers, but
for more systems of computers.”

---From the Wit and Wisdom of Grace Hopper
(1906-1992),
http://www.cs.yale.edu/homes/tap/Files/hopper-
wit.html

2/19/2018CSE4/587 B. Ramamurthy

3

http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html

Introduction : Ch.1 (Lin and Dyer’s text)

 Text processing: web-scale corpora (singular corpus)

 Simple word count, cross reference, n-grams, …

 A simpler technique on more data beat a more
sophisticated technique on less data.

 Google researchers call this: “unreasonable
effectiveness of data”

--Alon Halevy, Peter Norvig, and Fernando Pereira.
The unreasonable effectiveness of data.
Communications of the ACM, 24(2):8:12, 2009.

2/19/2018CSE4/587 B. Ramamurthy

4

MapReduce

CSE4/587 B. Ramamurthy2/19/2018

5

What is MapReduce?

 MapReduce is a programming model Google has used
successfully in processing its “big-data” sets (~ 20 peta
bytes per day in 2008)

 Users specify the computation in terms of a map and a
reduce function,

 Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures,
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

2/19/2018

6

CSE4/587 B. Ramamurthy

 Scale-out and not scale-up: Large number of
commodity servers as opposed large number of high
end specialized servers

 Economies of scale, ware-house scale computing

 MR is designed to work with clusters of commodity servers

 Research issues: Read Barroso and Holzle’s work

 Failures are norm or common:

 With typical reliability, MTBF of 1000 days (about 3 years), if
you have a cluster of 1000, probability of at least 1 server
failure at any time is nearly 100%

Big idea behind MR

2/19/2018CSE4/587 B. Ramamurthy

7

Big idea (contd.)

2/19/2018CSE4/587 B. Ramamurthy

8

 Moving “processing” to the data: not literally, data
and processing are co-located versus sending data
around as in HPC

 Process data sequentially vs random access:
analytics on large sequential bulk data as opposed to
search for one item in a large indexed table

 Hide system details from the user application:
user application does not have to get involved in which
machine does what. Infrastructure can do it.

 Seamless scalability: Can add machines / server
power without changing the algorithms: this is in-order
to process larger data set

 How to break large problem into smaller problems?
Decomposition for parallel processing

 How to assign tasks to workers distributed around the
cluster?

 How do the workers get the data?

 How to synchronize among the workers?

 How to share partial results among workers?

 How to do all these in the presence of errors and
hardware failures?

 MR is supported by a distributed file system that
addresses many of these aspects.

Issues to be addressed

2/19/2018CSE4/587 B. Ramamurthy

9

 Fundamental concept:
 Key-value pairs form the basic structure of MapReduce <key,

value>
 Key can be anything from a simple data types (int, float, etc)

to file names to custom types.
 Examples:
 <docid, docitself>
 <yourName, yourLifeHistory>
 <graphNode, nodeCharacteristicsComplexData>
 <yourId, yourFollowers>
 <word, itsNumofOccurrences>
 <planetName, planetInfo>
 <geneNum, <{pathway, geneExp, proteins}>
 <Student, stuDetails>

MapReduce Basics

2/19/2018CSE4/587 B. Ramamurthy

10

From CS Foundations to MapReduce
(Example#1)

Consider a large data collection:

{web, weed, green, sun, moon, land, part, web,
green,…}

Problem: Count the occurrences of the different words
in the collection.

Lets design a solution for this problem;
 We will start from scratch

 We will add and relax constraints

 We will do incremental design, improving the solution for
performance and scalability

2/19/2018

11

CSE4/587 B. Ramamurthy

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

2/19/2018

12

ResultTable

Main

DataCollection

WordCounter

parse()
count()

{web, weed, green, sun, moon, land, part,
web, green,…}

CSE4/587 B. Ramamurthy

Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

2/19/2018

13

Thread

DataCollection ResultTable

WordCounter

parse()
count()

Main

1..*1..*

Data
collection

Observe:
Multi-thread
Lock on shared data

CSE4/587 B. Ramamurthy

Improve Word Counter for Performance

2/19/2018

14

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

CSE4/587 B. Ramamurthy

Peta-scale Data

2/19/2018

15

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CSE4/587 B. Ramamurthy

Addressing the Scale Issue

2/19/2018

16

 Single machine cannot serve all the data: you need a distributed
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB
each
 Issue: With Mean time between failures (MTBF) or failure rate of

1/1000, then at least 1 of the above 1000 disks would be down at a
given time.

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing,
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations

CSE4/587 B. Ramamurthy

Peta-scale Data

2/19/2018

17

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CSE4/587 B. Ramamurthy

Peta Scale Data is Commonly Distributed

2/19/2018

18

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

CSE4/587 B. Ramamurthy

Write Once Read Many (WORM) data

2/19/2018

19

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

CSE4/587 B. Ramamurthy

WORM Data is Amenable to Parallelism

2/19/2018

20

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM
characteristics : yields
to parallel processing;

2. Data without
dependencies: yields
to out of order
processing

CSE4/587 B. Ramamurthy

Divide and Conquer: Provision Computing at Data Location

2/19/2018

21

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault
tolerance + replication + monitoring +
load balancing to your base application!

One node

CSE4/587 B. Ramamurthy

Mapper and Reducer

2/19/2018

22

MapReduceTask

YourMapper
YourReducerParser

Counter

Mapper Reducer

Remember: MapReduce is simplified processing for larger data sets

CSE4/587 B. Ramamurthy

Map Operation

MAP: Input data <key, value> pair

Data
Collection: split1

weed 1

weed 1

green 1

sun 1

moon 1

land 1

land 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

2/19/2018

23

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

part 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

green 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

web 1

KEY VALUE

…

CSE4/587 B. Ramamurthy

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example #2

2/19/2018

24

CSE4/587 B. Ramamurthy

barrier

 You focus on Map function, Reduce function and other related
functions like combiner etc.

 Mapper and Reducer are designed as classes and the function
defined as a method.

 Configure the MR “Job” for location of these functions,
location of input and output (paths within the local server),
scale or size of the cluster in terms of #maps, # reduce etc.,
run the job.

 Thus a complete MapReduce job consists of code for the
mapper, reducer, combiner, and partitioner, along with job
configuration parameters. The execution framework
handles everything else.

 The way we configure has been evolving with versions of
hadoop.

MapReduce Design

2/19/2018CSE4/587 B. Ramamurthy

25

1: class Mapper
2: method Map(docid a; doc d)
3: for all term t in doc d do
4: Emit(term t; count 1)

1: class Reducer
2: method Reduce(term t; counts [c1; c2; : : :])
3: sum = 0
4: for all count c in counts [c1; c2; : : :] do
5: sum = sum + c
6: Emit(term t; count sum)

The code

2/19/2018CSE4/587 B. Ramamurthy

26

Text Word Count Problem

2/19/2018CSE4/587 B. Ramamurthy

27

This is a cat
Cat sits on a roof

The roof is a tin roof
There is a tin can on the roof

Cat kicks the can
It rolls on the roof and falls on the next roof

The cat rolls too
It sits on the can

Problem: Count the word frequency. Include all the words. We will worry
about stop words and stemming later.

MapReduce Example: Mapper

This is a cat
Cat sits on a roof
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>

The roof is a tin roof
There is a tin can on the roof
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on

1><the 1> <roof 1>

Cat kicks the can
It rolls on the roof and falls on the next roof
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls

1><on 1> <the 1> <next 1> <roof 1>

The cat rolls too
It sits on the can
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

2/19/2018CSE4/587 B. Ramamurthy

28

MapReduce Example: Shuffle to the Reducer

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on 1><the 1>

<roof 1>
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1><on 1>

<the 1> <next 1> <roof 1>
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the reducer: delivered sorted... By key
..
<can <1, 1>>
<cat <1,1,1,1>>
…
<roof <1,1,1,1,1,1>>
..…
Reduce (sum in this case) the counts: comes out sorted!!!
..
<can 2>
<cat 4>
..
<roof 6>

2/19/2018CSE4/587 B. Ramamurthy

29

 All Mappers work in parallel.

 Barriers enforce all mappers completion before
Reducers start.

 Mappers and Reducers typically execute on the same
machine

 You can configure job to have other combinations
besides Mapper/Reducer: ex: identify
mappers/reducers for realizing “sort” (that happens
to be a Benchmark)

 Mappers and reducers can have side effects; this
allows for sharing information between iterations.

More on MR

2/19/2018CSE4/587 B. Ramamurthy

30

MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism

without mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine

and partition: we will look at those later.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for

operations.
 Special distributed file system: Hadoop Distributed File

System and Hadoop Runtime.

2/19/2018

31

CSE4/587 B. Ramamurthy

Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.

 Simple algorithms such as grep, text-indexing, reverse
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial
objects.

 Expected to play a critical role in semantic web and web3.0

2/19/2018

32

CSE4/587 B. Ramamurthy

Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large

2/19/2018

33

CSE4/587 B. Ramamurthy

Lets Review Map/Reducer

2/19/2018CSE4/587 B. Ramamurthy

34

 Map function maps one <key,value> space to another. One to
many: “expand” or “divide”

 Reduce does that too. But many to one: “merge”
 There can be multiple “maps” in a single machine…
 Each mapper(map) runs parallel with and independent of the

other (think of a bee hive)
 All the outputs from mappers are collected and the “key

space” is partitioned among the reducers. (what do you need
to partition?)

 Now the reducers take over. One reduce/per key (by default)
 Reduce operation can be anything.. Does not have to be just

counting…(operation [list of items]) – You can do magic with
this concept.

Hadoop

CSE4/587 B. Ramamurthy2/19/2018

35

What is Hadoop?

 At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).

 The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.

2/19/2018

36

CSE4/587 B. Ramamurthy

Hadoop

2/19/2018CSE4/587 B. Ramamurthy

37

What has changed? Hmm…

2/19/2018CSE4/587 B. Ramamurthy

38

Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 HDFS core principles are the same in both major releases of Hadoop.

•

2/19/2018

39

CSE4/587 B. Ramamurthy

Hadoop Distributed File System

2/19/2018

40

Application

Local file
system

Masters: Job tracker,
Name node,
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CSE4/587 B. Ramamurthy

Hadoop Distributed File System

2/19/2018

41

Application

Local file
system

Masters: Job tracker,
Name node,
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CSE4/587 B. Ramamurthy

From Brad Hedlund: a very nice picture

2/19/2018CSE4/587 B. Ramamurthy

42

Hadoop (contd.)

 What are : Job tracker, Name node, Secondary name
node, data node, task tracker…?

 What are their roles?

 Before we discuss those: lets look a demo of
mapreduce on Hadoop MapReduce

2/19/2018CSE4/587 B. Ramamurthy

43

