
B I N A R A M A M U R T H Y
P A R T I A L L Y S U P P O R T E D B Y

N S F D U E G R A N T : 0 7 3 7 2 4 3 , 0 9 2 0 3 3 5

An Innovative Approach to
Parallel Processing Data

2/19/2018CSE4/587 B. Ramamurthy

1

The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20PB a day (2008) …

 2010 census data is a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer

 programming models, and

 Supporting algorithms and data structures

 National Science Foundation refers to it as “data-intensive computing”
and industry calls it “big-data” and “cloud computing”

2/19/2018

2

CSE4/587 B. Ramamurthy

More context

 Rear Admiral Grace Hopper: “In pioneer days they
used oxen for heavy pulling, and when one ox
couldn't budge a log, they didn't try to grow a larger
ox. We shouldn't be trying for bigger computers, but
for more systems of computers.”

---From the Wit and Wisdom of Grace Hopper
(1906-1992),
http://www.cs.yale.edu/homes/tap/Files/hopper-
wit.html

2/19/2018CSE4/587 B. Ramamurthy

3

http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html

Introduction : Ch.1 (Lin and Dyer’s text)

 Text processing: web-scale corpora (singular corpus)

 Simple word count, cross reference, n-grams, …

 A simpler technique on more data beat a more
sophisticated technique on less data.

 Google researchers call this: “unreasonable
effectiveness of data”

--Alon Halevy, Peter Norvig, and Fernando Pereira.
The unreasonable effectiveness of data.
Communications of the ACM, 24(2):8:12, 2009.

2/19/2018CSE4/587 B. Ramamurthy

4

MapReduce

CSE4/587 B. Ramamurthy2/19/2018

5

What is MapReduce?

 MapReduce is a programming model Google has used
successfully in processing its “big-data” sets (~ 20 peta
bytes per day in 2008)

 Users specify the computation in terms of a map and a
reduce function,

 Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures,
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

2/19/2018

6

CSE4/587 B. Ramamurthy

 Scale-out and not scale-up: Large number of
commodity servers as opposed large number of high
end specialized servers

 Economies of scale, ware-house scale computing

 MR is designed to work with clusters of commodity servers

 Research issues: Read Barroso and Holzle’s work

 Failures are norm or common:

 With typical reliability, MTBF of 1000 days (about 3 years), if
you have a cluster of 1000, probability of at least 1 server
failure at any time is nearly 100%

Big idea behind MR

2/19/2018CSE4/587 B. Ramamurthy

7

Big idea (contd.)

2/19/2018CSE4/587 B. Ramamurthy

8

 Moving “processing” to the data: not literally, data
and processing are co-located versus sending data
around as in HPC

 Process data sequentially vs random access:
analytics on large sequential bulk data as opposed to
search for one item in a large indexed table

 Hide system details from the user application:
user application does not have to get involved in which
machine does what. Infrastructure can do it.

 Seamless scalability: Can add machines / server
power without changing the algorithms: this is in-order
to process larger data set

 How to break large problem into smaller problems?
Decomposition for parallel processing

 How to assign tasks to workers distributed around the
cluster?

 How do the workers get the data?

 How to synchronize among the workers?

 How to share partial results among workers?

 How to do all these in the presence of errors and
hardware failures?

 MR is supported by a distributed file system that
addresses many of these aspects.

Issues to be addressed

2/19/2018CSE4/587 B. Ramamurthy

9

 Fundamental concept:
 Key-value pairs form the basic structure of MapReduce <key,

value>
 Key can be anything from a simple data types (int, float, etc)

to file names to custom types.
 Examples:
 <docid, docitself>
 <yourName, yourLifeHistory>
 <graphNode, nodeCharacteristicsComplexData>
 <yourId, yourFollowers>
 <word, itsNumofOccurrences>
 <planetName, planetInfo>
 <geneNum, <{pathway, geneExp, proteins}>
 <Student, stuDetails>

MapReduce Basics

2/19/2018CSE4/587 B. Ramamurthy

10

From CS Foundations to MapReduce
(Example#1)

Consider a large data collection:

{web, weed, green, sun, moon, land, part, web,
green,…}

Problem: Count the occurrences of the different words
in the collection.

Lets design a solution for this problem;
 We will start from scratch

 We will add and relax constraints

 We will do incremental design, improving the solution for
performance and scalability

2/19/2018

11

CSE4/587 B. Ramamurthy

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

2/19/2018

12

ResultTable

Main

DataCollection

WordCounter

parse()
count()

{web, weed, green, sun, moon, land, part,
web, green,…}

CSE4/587 B. Ramamurthy

Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

2/19/2018

13

Thread

DataCollection ResultTable

WordCounter

parse()
count()

Main

1..*1..*

Data
collection

Observe:
Multi-thread
Lock on shared data

CSE4/587 B. Ramamurthy

Improve Word Counter for Performance

2/19/2018

14

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

CSE4/587 B. Ramamurthy

Peta-scale Data

2/19/2018

15

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CSE4/587 B. Ramamurthy

Addressing the Scale Issue

2/19/2018

16

 Single machine cannot serve all the data: you need a distributed
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB
each
 Issue: With Mean time between failures (MTBF) or failure rate of

1/1000, then at least 1 of the above 1000 disks would be down at a
given time.

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing,
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations

CSE4/587 B. Ramamurthy

Peta-scale Data

2/19/2018

17

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CSE4/587 B. Ramamurthy

Peta Scale Data is Commonly Distributed

2/19/2018

18

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

CSE4/587 B. Ramamurthy

Write Once Read Many (WORM) data

2/19/2018

19

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

CSE4/587 B. Ramamurthy

WORM Data is Amenable to Parallelism

2/19/2018

20

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM
characteristics : yields
to parallel processing;

2. Data without
dependencies: yields
to out of order
processing

CSE4/587 B. Ramamurthy

Divide and Conquer: Provision Computing at Data Location

2/19/2018

21

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input  <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault
tolerance + replication + monitoring +
load balancing to your base application!

One node

CSE4/587 B. Ramamurthy

Mapper and Reducer

2/19/2018

22

MapReduceTask

YourMapper
YourReducerParser

Counter

Mapper Reducer

Remember: MapReduce is simplified processing for larger data sets

CSE4/587 B. Ramamurthy

Map Operation

MAP: Input data  <key, value> pair

Data
Collection: split1

weed 1

weed 1

green 1

sun 1

moon 1

land 1

land 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

2/19/2018

23

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

part 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

green 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

web 1

KEY VALUE

…

CSE4/587 B. Ramamurthy

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example #2

2/19/2018

24

CSE4/587 B. Ramamurthy

barrier

 You focus on Map function, Reduce function and other related
functions like combiner etc.

 Mapper and Reducer are designed as classes and the function
defined as a method.

 Configure the MR “Job” for location of these functions,
location of input and output (paths within the local server),
scale or size of the cluster in terms of #maps, # reduce etc.,
run the job.

 Thus a complete MapReduce job consists of code for the
mapper, reducer, combiner, and partitioner, along with job
configuration parameters. The execution framework
handles everything else.

 The way we configure has been evolving with versions of
hadoop.

MapReduce Design

2/19/2018CSE4/587 B. Ramamurthy

25

1: class Mapper
2: method Map(docid a; doc d)
3: for all term t in doc d do
4: Emit(term t; count 1)

1: class Reducer
2: method Reduce(term t; counts [c1; c2; : : :])
3: sum = 0
4: for all count c in counts [c1; c2; : : :] do
5: sum = sum + c
6: Emit(term t; count sum)

The code

2/19/2018CSE4/587 B. Ramamurthy

26

Text Word Count Problem

2/19/2018CSE4/587 B. Ramamurthy

27

This is a cat
Cat sits on a roof

The roof is a tin roof
There is a tin can on the roof

Cat kicks the can
It rolls on the roof and falls on the next roof

The cat rolls too
It sits on the can

Problem: Count the word frequency. Include all the words. We will worry
about stop words and stemming later.

MapReduce Example: Mapper

This is a cat
Cat sits on a roof
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>

The roof is a tin roof
There is a tin can on the roof
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on

1><the 1> <roof 1>

Cat kicks the can
It rolls on the roof and falls on the next roof
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls

1><on 1> <the 1> <next 1> <roof 1>

The cat rolls too
It sits on the can
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

2/19/2018CSE4/587 B. Ramamurthy

28

MapReduce Example: Shuffle to the Reducer

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof 1>
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on 1><the 1>

<roof 1>
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1><on 1>

<the 1> <next 1> <roof 1>
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the reducer: delivered sorted... By key
..
<can <1, 1>>
<cat <1,1,1,1>>
…
<roof <1,1,1,1,1,1>>
..…
Reduce (sum in this case) the counts: comes out sorted!!!
..
<can 2>
<cat 4>
..
<roof 6>

2/19/2018CSE4/587 B. Ramamurthy

29

 All Mappers work in parallel.

 Barriers enforce all mappers completion before
Reducers start.

 Mappers and Reducers typically execute on the same
machine

 You can configure job to have other combinations
besides Mapper/Reducer: ex: identify
mappers/reducers for realizing “sort” (that happens
to be a Benchmark)

 Mappers and reducers can have side effects; this
allows for sharing information between iterations.

More on MR

2/19/2018CSE4/587 B. Ramamurthy

30

MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism

without mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine

and partition: we will look at those later.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for

operations.
 Special distributed file system: Hadoop Distributed File

System and Hadoop Runtime.

2/19/2018

31

CSE4/587 B. Ramamurthy

Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.

 Simple algorithms such as grep, text-indexing, reverse
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial
objects.

 Expected to play a critical role in semantic web and web3.0

2/19/2018

32

CSE4/587 B. Ramamurthy

Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large

2/19/2018

33

CSE4/587 B. Ramamurthy

Lets Review Map/Reducer

2/19/2018CSE4/587 B. Ramamurthy

34

 Map function maps one <key,value> space to another. One to
many: “expand” or “divide”

 Reduce does that too. But many to one: “merge”
 There can be multiple “maps” in a single machine…
 Each mapper(map) runs parallel with and independent of the

other (think of a bee hive)
 All the outputs from mappers are collected and the “key

space” is partitioned among the reducers. (what do you need
to partition?)

 Now the reducers take over. One reduce/per key (by default)
 Reduce operation can be anything.. Does not have to be just

counting…(operation [list of items]) – You can do magic with
this concept.

Hadoop

CSE4/587 B. Ramamurthy2/19/2018

35

What is Hadoop?

 At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).

 The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.

2/19/2018

36

CSE4/587 B. Ramamurthy

Hadoop

2/19/2018CSE4/587 B. Ramamurthy

37

What has changed? Hmm…

2/19/2018CSE4/587 B. Ramamurthy

38

Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 HDFS core principles are the same in both major releases of Hadoop.

•

2/19/2018

39

CSE4/587 B. Ramamurthy

Hadoop Distributed File System

2/19/2018

40

Application

Local file
system

Masters: Job tracker,
Name node,
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CSE4/587 B. Ramamurthy

Hadoop Distributed File System

2/19/2018

41

Application

Local file
system

Masters: Job tracker,
Name node,
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CSE4/587 B. Ramamurthy

From Brad Hedlund: a very nice picture

2/19/2018CSE4/587 B. Ramamurthy

42

Hadoop (contd.)

 What are : Job tracker, Name node, Secondary name
node, data node, task tracker…?

 What are their roles?

 Before we discuss those: lets look a demo of
mapreduce on Hadoop MapReduce

2/19/2018CSE4/587 B. Ramamurthy

43

