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The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20PB a day (2008) …

 2010 census data is a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains 
from astronomy to healthcare has become essential for planning and 
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer 

 programming models, and

 Supporting algorithms and data structures

 National Science Foundation refers to it as “data-intensive computing” 
and industry calls it “big-data” and “cloud computing”
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More context

 Rear Admiral Grace Hopper: “In pioneer days they 
used oxen for heavy pulling, and when one ox 
couldn't budge a log, they didn't try to grow a larger 
ox. We shouldn't be trying for bigger computers, but 
for more systems of computers.” 

---From the Wit and Wisdom of Grace Hopper 
(1906-1992), 
http://www.cs.yale.edu/homes/tap/Files/hopper-
wit.html
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Introduction : Ch.1 (Lin and Dyer’s text) 

 Text processing: web-scale corpora (singular corpus)

 Simple word count, cross reference, n-grams, …

 A simpler technique on more data beat a more 
sophisticated technique on less data.

 Google researchers call this: “unreasonable 
effectiveness of data”

--Alon Halevy, Peter Norvig, and Fernando Pereira. 
The unreasonable effectiveness of data. 
Communications of the ACM, 24(2):8:12, 2009.
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MapReduce
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What is MapReduce?

 MapReduce is a programming model Google has used 
successfully in processing its “big-data” sets (~ 20 peta 
bytes per day in 2008)

 Users specify the computation in terms of a map and a 
reduce function, 

 Underlying runtime system automatically parallelizes the 
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures, 
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce: 
simplified data processing on large clusters. Communication of 
ACM 51, 1 (Jan. 2008), 107-113.
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 Scale-out and not scale-up: Large number of 
commodity servers as opposed large number of high 
end specialized servers

 Economies of scale, ware-house scale computing

 MR is designed to work with clusters of commodity servers

 Research issues: Read Barroso and Holzle’s work

 Failures are norm or common: 

 With typical reliability, MTBF of 1000 days (about 3 years), if 
you have a cluster of 1000, probability of at least 1 server 
failure at any time is nearly 100%

Big idea behind MR
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Big idea (contd.)
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 Moving “processing” to the data: not literally, data 
and processing are co-located versus sending data 
around as in HPC

 Process data sequentially vs random access: 
analytics on large sequential bulk data as opposed to 
search for one item in a large indexed table

 Hide system details from the user application: 
user application does not have to get involved in which 
machine does what. Infrastructure can do it.

 Seamless scalability:  Can add machines / server 
power without changing the algorithms: this is in-order 
to process larger data set  



 How to break large problem into smaller problems? 
Decomposition for parallel processing

 How to assign tasks to workers distributed around the 
cluster?

 How do the workers get the data?

 How to synchronize among the workers?

 How to share partial results among workers?

 How to do all these in the presence of errors and 
hardware failures?

 MR is supported by a distributed file system that 
addresses many of these aspects.

Issues to be addressed
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 Fundamental concept:
 Key-value pairs form the basic structure of MapReduce <key, 

value>
 Key can be anything from a simple data types (int, float, etc) 

to file names to custom types.
 Examples: 
 <docid, docitself>
 <yourName, yourLifeHistory>
 <graphNode, nodeCharacteristicsComplexData>
 <yourId, yourFollowers>
 <word, itsNumofOccurrences>
 <planetName, planetInfo>
 <geneNum, <{pathway, geneExp, proteins}>
 <Student, stuDetails>

MapReduce Basics
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From CS Foundations to MapReduce 
(Example#1)

Consider a large data collection: 

{web, weed, green, sun, moon, land, part, web, 
green,…}

Problem: Count the occurrences of the different words 
in the collection.

Lets design a solution for this problem; 
 We will start from scratch

 We will add and relax constraints 

 We will do incremental design, improving the solution for 
performance and scalability
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Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

2/19/2018

12

ResultTable

Main

DataCollection

WordCounter

parse( )
count( )

{web, weed, green, sun, moon, land, part, 
web, green,…}
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Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Thread

DataCollection ResultTable

WordCounter

parse( )
count( )

Main

1..*1..*

Data
collection

Observe: 
Multi-thread
Lock on shared data
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Improve Word Counter for Performance 
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o 

No need for lock

Separate counters
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Peta-scale Data
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Addressing the Scale Issue
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 Single machine cannot serve all the data: you need a distributed 
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB 
each
 Issue: With Mean time between failures (MTBF) or failure rate of 

1/1000, then at least 1 of the above 1000 disks would be down at a 
given time. 

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing, 
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations 
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Peta-scale Data
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Peta Scale Data is Commonly Distributed 
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data
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Write Once Read Many (WORM) data
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection
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WORM Data is Amenable to Parallelism
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Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM 
characteristics : yields 
to parallel processing;  

2. Data without 
dependencies: yields 
to out of order 
processing
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Divide and Conquer: Provision Computing at Data Location
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WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input  <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault 
tolerance + replication + monitoring +
load balancing to your base application!

One node
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Mapper and Reducer

2/19/2018

22

MapReduceTask

YourMapper
YourReducerParser

Counter

Mapper Reducer

Remember: MapReduce is simplified processing for larger data sets
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Map Operation

MAP: Input data  <key, value> pair

Data
Collection: split1

weed 1

weed 1

green 1

sun 1

moon 1

land 1

land 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map
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web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

part 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

green 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

web 1

KEY VALUE

…
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Cat

Bat

Dog

Other 
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example #2
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 You focus on Map function, Reduce function and other related 
functions like combiner etc.

 Mapper and Reducer are designed as classes and the function 
defined as a method.

 Configure the MR “Job” for location of these functions, 
location of input and output (paths within the local server), 
scale or size of the cluster in terms of #maps, # reduce etc., 
run the job.

 Thus a complete MapReduce job consists of code for the 
mapper, reducer, combiner, and partitioner, along with job 
configuration parameters. The execution framework 
handles everything else.

 The way we configure has been evolving with versions of 
hadoop.

MapReduce Design
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1: class Mapper
2: method Map(docid a; doc d)
3: for all term t in doc d do
4: Emit(term t; count 1)

1: class Reducer
2: method Reduce(term t; counts [c1; c2; : : :])
3: sum =  0
4: for all count c in counts [c1; c2; : : :] do
5: sum = sum + c
6: Emit(term t; count sum)

The code
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Text Word Count Problem
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This is a cat
Cat sits on a roof

The roof is a tin roof
There is a tin can on the roof

Cat kicks the can
It rolls on the roof and falls on the next roof

The cat rolls too
It sits on the can

Problem: Count the word frequency. Include  all the words. We will worry 
about stop words and stemming later.



MapReduce Example: Mapper 

This is a cat
Cat sits on a roof
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof  1>

The roof is a tin roof
There is a tin can on the roof
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on 

1><the 1> <roof 1> 

Cat kicks the can
It rolls on the roof and falls on the next roof
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 

1><on 1> <the 1> <next 1> <roof 1> 

The cat rolls too
It sits on the can
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>
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MapReduce Example: Shuffle to the Reducer

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1><a 1> <roof  1>
<the 1> <roof 1> <is 1> <a 1> <tin 1 ><roof 1> <there 1> <is 1> <a 1> <tin 1><can 1> <on 1><the 1> 

<roof 1> 
<cat 1> <kicks 1> <the 1><can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1><on 1> 

<the 1> <next 1> <roof 1> 
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the reducer: delivered sorted... By key
..
<can <1, 1>>
<cat <1,1,1,1>>
…
<roof <1,1,1,1,1,1>>
..…
Reduce (sum in this case) the counts: comes out sorted!!!
..
<can 2>
<cat 4>
..
<roof 6>
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 All Mappers work in parallel.

 Barriers enforce all mappers completion before 
Reducers start.

 Mappers and Reducers typically execute on the same 
machine

 You can configure job to have other combinations 
besides Mapper/Reducer: ex: identify 
mappers/reducers for realizing “sort” (that happens 
to be a Benchmark)

 Mappers and reducers can have side effects; this 
allows for sharing information between iterations.

More on MR
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MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism 

without mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine 

and partition: we will look at those later.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for 

operations.
 Special distributed file system: Hadoop Distributed File 

System and Hadoop Runtime.
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Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank, 
indexing data. 

 Simple algorithms such as grep, text-indexing, reverse 
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial 
objects.

 Expected to play a critical role in semantic web and web3.0
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Scope of MapReduce 

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large
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Lets Review Map/Reducer
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 Map function maps one <key,value> space to another. One to 
many: “expand” or “divide”

 Reduce does that too. But many to one: “merge”
 There can be multiple “maps” in a single machine… 
 Each mapper(map) runs parallel with and independent of the 

other (think of a bee hive)
 All the outputs from mappers are collected and the “key 

space” is partitioned among the reducers. (what do you need 
to partition?)

 Now the reducers take over. One reduce/per key (by default) 
 Reduce operation can be anything.. Does not have to be just 

counting…(operation [list of items]) – You can do magic with 
this concept. 



Hadoop
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What is Hadoop?

 At Google MapReduce operation are run on a special 
file system called Google File System (GFS) that is 
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the 
GFS and called it Hadoop Distributed File System 
(HDFS).

 The software framework that supports HDFS, 
MapReduce and other related entities is called  the 
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.
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Hadoop
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What has changed? Hmm…
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Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

 HDFS core principles are the same in both major releases of Hadoop.

•
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Hadoop Distributed File System
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Application

Local file 
system

Masters: Job tracker, 
Name node, 
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated
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Hadoop Distributed File System
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Application

Local file 
system

Masters: Job tracker, 
Name node, 
Secondary name node

Slaves: Task tracker, Data Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated
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From Brad Hedlund: a very nice picture
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Hadoop (contd.)

 What are : Job tracker, Name node, Secondary name 
node, data node, task tracker…?

 What are their roles?

 Before we discuss those: lets look a demo of 
mapreduce on Hadoop MapReduce
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