
MapReduce 
Basics 
CHAPTER 2 L IN AND DYER &

HTTP://DEVELOPER.YAHOO.COM/HADOOP/TUTORIAL/



Lin and Dyer’s text
Chapter 1: Please read: sets the context for MR

Chapter 2: MR Basics: analysis of a sample problem 
analysis/walkthrough

Chapter 3: MR Algorithm Design (up to p.60)

Chapter 4: Inverted index for text retrieval

Chapter 5: Graph algorithms (pagerank and other 
classical algorithms)



Big Ideas
Read Chapter 1

1. Scale out and not scale up

2. Assume failures are common

3. Move processing to data

4. Process sequentially and avoid random access 
(deterministic)

5. Hide system level details from the developer

6. Seamless scalability



MR: Divide and Conquer 
Algorithm
How do we break up a large problem into smaller tasks? More specifically, how 
do we decompose the problem so that the smaller tasks can be executed in 
parallel?

How do we assign tasks to workers distributed across a potentially large 
number of machines (while keeping in mind that some workers are better 
suited to running some tasks than others, e.g., due to available resources, 
locality constraints, etc.)?

How do we ensure that the workers get the data they need?

How do we coordinate synchronization among the different workers?

How do we share partial results from one worker that is needed by another?

How do we accomplish all of the above in the face of software errors and 
hardware faults?



Basics
map: (k1,v1) --> [(k2,v2)]

reduce: (k2,[v2])-->[(k3,v3)]

Implicit between map and reduce is the implicit 
"group by" operation of intermediate keys

Hadoop does not have the GFS restriction that 
reducer's input key and output key type should be 
same.



Complete Example 
Figure 2.2: Simplified MR process (picture)

Figure 2.3: MR Algorithm (pseudo code)

Figure 2.4: MR process with combiners and partitioners
(picture)

Your answers to midterm questions should be in this format.

Lets go through couple of examples: (i) word count (ii) max 
value for each key



Simple MR



Simple MR Algorithm



Architecture
http://developer.yahoo.com/hadoop/tutorial 



Combiners and Partitioners
Combiner: combines the same “keys” at the output of a mapper

Runs after the Mapper and before the Reducer. Usage of the Combiner is optional. 

The Combiner will receive as input all data emitted by the Mapper instances on a given 
node. 

The output from the Combiner is then sent to the Reducers, instead of the output from 
the Mappers. 

The Combiner is a "mini-reduce" process which operates only on data generated by one 
machine.

This process of moving map outputs to the reducers is known as shuffling. 

A different subset of the intermediate key space is assigned to each reduce node; these 
subsets (known as "partitions") are the inputs to the reduce tasks.

Default partition function is a hash function.

Each map task may emit (key, value) pairs to any partition; all values for the same key are 
always reduced together regardless of which mapper is its origin.



MR Workflow



MR with Combiners & Partitioners



HDFS (Recall) : not to scale!



Summary
We learned 

Big ideas behind MR. Hadoop

Simple mapreduce for wordcount

Role of combiners and partitioners

HDFS architecture with namenode and datanode


