MapReduce
BasIcs

CHAPTER 2 LIN AND DYER &
HTTP://DEVELOPER.YAHOO.COM/HADOOP/TUTORIAL/

Lin and Dyer’s text

Chapter 1: Please read: sets the context for MR

Chapter 2: MR Basics: analysis of a sample problem
analysis/walkthrough

Chapter 3: MR Algorithm Design (up to p.60)

Chapter 4: Inverted index for text retrieval

Chapter 5: Graph algorithms (pagerank and other
classical algorithms)

Big [deas
Read Chapter 1
Scale out and not scale up

Assume failures are common

Move processing to data

B W

Process sequentially and avoid random access
(deterministic)

Hide system level details from the developer
6. Seamless scalability

MR: Divide and Conquer
Algorithm

How do we break up a large problem into smaller tasks? More specifically, how
do we decompose the problem so that the smaller tasks can be executed in
parallel?

How do we assign tasks to workers distributed across a potentially large
number of machines (while keeping in mind that some workers are better
suited to running some tasks than others, e.g., due to available resources,
locality constraints, etc.)?

How do we ensure that the workers get the data they need?
How do we coordinate synchronization among the different workers?
How do we share partial results from one worker that is needed by another?

How do we accomplish all of the above in the face of software errors and
hardware faults?

Basics

map: (k1,v1) --> [(k2,v2)]
reduce: (k2,[v2])-->[(k3,v3)]

Implicit between map and reduce is the implicit
"group by" operation of intermediate keys

Hadoop does not have the GFS restriction that
reducer's input key and output key type should be
same.

Complete Example

Figure 2.2: Simplified MR process (picture)

Figure 2.3: MR Algorithm (pseudo code)

Figure 2.4: MR process with combiners and partitioners
(picture)

Your answers to midterm questions should be in this format.

Lets go through couple of examples: (i) word count (ii) max
value for each key

Simple MR

ABl:BicicE=8rH

AN

[mapper] [mapper] [mapper] [mapper]

'
BB HB:He

Shuffle and Sort: aggregate values by keys

? I?

[reducer] [reducer] [reducer]

| ! !
x B

Figure 2.2: Simplified view of MapReduce. Mappers are applied to all input key-value pairs.

Simple MR Algorithm

1: class MAPPER

2: method Map(docid a, doc d)
3: for all term ¢ € doc d do

4: EMIT(term £, count 1)

1: class REDUCER

2 method REDUCE(term %, counts [cq, co, .. .])
3 sum «— 0

A: for all count ¢ € counts [¢, co,...] do

5 sum «— sum + ¢

6

EMIT(term ¢, count sum)

Figure 2.3: Pseudo-code for the word count algorithm in MapReduce. The mapper emits an
intermediate key-value pair for each word in a document. The reducer sums up all counts for
each word.

Architecture
http://developeryahoo.com/hadoop/tutorial

Pre-loaded local
input data

Intermediate data
from mappers

Values exchanged
by shuffle process

Feducing process
generates outputs

Outputs stored
locally

Node 1

EErEET

Mapping process

(0000

Node 2

JeETaT

Mapping process

0000

Node 3

TILI1L7

Mapping process

(0000

Node 1

35y

Reducing process

L

Node 2

155y

Reducing process

—

Node 3

P PPy

Reducing process

m—

Combiners and Partitioners

Combiner: combines the same “keys” at the output of a mapper

Runs after the Mapper and before the Reducer. Usage of the Combiner is optional.

Thg Combiner will receive as input all data emitted by the Mapper instances on a given
node.

The output from the Combiner is then sent to the Reducers, instead of the output from
the Mappers.

The ﬁpmbiner is a "mini-reduce" process which operates only on data generated by one
machine.

This process of moving map outputs to the reducers is known as shuffling.

A different subset of the intermediate key space is assigned to each reduce node; these
subsets (known as "partitions") are the inputs to the reduce tasks.

Default partition function is a hash function.

Each map task may emit (key, value) pairs to any partition; all values for the same key are
always reduced together regardless of which mapper is its origin.

MR Workflow

Node 1 Node 2

Files loaded from local HOFS stores Files loaded from local HOFS stores

-l N

l'‘""---._____.---"""' "-..._____________,..-"
InputFormat InputFormat
fle file
fle - i S i i i file
—) () () () ONON®
1 . __T/
RecordReadars: RR RR RR RR RR RR
Input (k, v) pairs ¢ ¢ i i ¢ l It (k, v) pairs
map map map map map map
Intermediate (k, v) pairs\ l / \ l A&fmedlata (k.) pairs
Partiticner Fartitioner

“Shuffling” process

‘-_‘—-—-_‘_-_-_-_ ._._._._._._._._._-—
E—— l

l-g-—-—-—'""_'_'_'_._ Intermediate (k, v} T —

pairs exchanged
{sort) by all nodes (sort)
reduce reduce
Final (k, v} pairs l l Final (k, v} pairs
Whiteback to Writeback to
local HDFS OutputFormat OutputFarmat lacal HOFS

MR with Combiners & Partitioners

~El:BlcMicEl=Hl-H

A IR RN

[mapper] [mapper] [mapper] mapper \
' | | I
<H -8

[combiner] l combiner] [combiner] [combiner]

[partitioner] [partitioner] [partitioner] partitioner |

Shuffle and Sort: aggregate values by keys

? ?

[reducer] l reducer] [reducer]

! ! |
v i

Figure 2.4: Complete view of MapReduce, illustrating combiners and partitioners in addi-

tion to mappers and reducers. Combiners can be viewed as “mini-reducers” in the map phase.

Partitioners determine which reducer is responsible for a particular key.

HDFS (Recall) : not to scale!

32 CHAPTER 2. MAPREDUCE BASICS

HDFS namenode

Application o block id [foolbar
. (file name, block id) » File namespace block 3df2
HDFS Client |, e
A (block id, block location)

instructions to datanode

) datanode state
(block id, byte range)

HDFS datanode HDFS datanode

block dat . -
ock data Linux file system Linux file system

26 . ©a

Figure 2.5: The architecture of HDF'S. The namenode (master) is responsible for maintaining
the file namespace and directing clients to datanodes (slaves) that actually hold data blocks

containing user data.

Summary

We learned
Big ideas behind MR. Hadoop

Simple mapreduce for wordcount

Role of combiners and partitioners

HDFS architecture with namenode and datanode

