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e We want to model the birth-death process of topic evolution. % MGG (a2 05, b 10, M = 10 oo | walatle Table 1: Test log-likelihood on 9 datasets. DHNGG: dependent
e We want to model the topic dependency between time frames. 103 o | ﬁapn:éﬁ% — hierarchical normalized generalized Gamma processes, DHDP:
e We want to model the power-law phenomena appeared in gloz 3 ous | ﬁm;’.jE g?rﬁ)frﬂgfntofg;irecsﬂICDa7|_A5)_Igcfrl]lae;[n Er?geiisr?]s;dZDP. hierarchical
most of natural datasets, e.g., text datasets. £ T o001 | e P ’ i P ’
“l %fm . L s | vesimert Datasets|  ICML JMLR TPAMI NIPS Person
. 0 R .. | language === DHNGG |-5.3123e+04 -7.3318e+04 |-1.1841e+05 | -4.1866e+06 -2.4718e+06
2 Normalized Random Measures 1 w o e * g %, %, T, T, DHDP | -5.33666+04 -7.3661e+04 -1.2006e+05 -4.40556+06 | -2.4763e+06
HDP | -5.4793e+04 -7.7442e+04 | -1.2363e+05 | -4.4122e+06 -2.6125e+06
: . - - ] | | | | DTM  -6.2982e+04 | -8.7226e+04 -1.4021e+05  -5.1590e+06  -2.9023e+06
Poisson Procr:]eﬁse_s;. AAP O_’SShO” pr ocbess c;n Slisa ff”qof‘)l sub Figure 1: Left: Power-law phenomena in NGG; Right: topic evo- Datasels  Twitter: Twitter, Twitter, 50T
Shet I €5 suc tpat.' V(A)is the num elr © P%’nts oftlin AC S, ytion on JMLR. Shows a late developing topic on software, be- DANGG -1.0391e+05 -2.1777e+05 -1.5694+05 -3.3909¢+05
then N(A) is a Poisson random variable with mean v(A4), and fore during and after the start of MLOSS.org in 2008. DHDP |-1.0711e+05|-2.2090e+05 | -1.5847e+05 -3.4048e+05
N(Ay),---,N(Ap) are independent if Ay, ---, Ay, are disjoint. HDP |-1.0752e+05 | -2.1903e+05 | -1.6016e+05  -3.4833e+05
Completely Random Measures (CRM): Let S — R+ x X, a DTM | -1.2130e+05 | -2.6264e+05 -1.9929e+05 | -3.9316e+05

CRM [ is defined as a linear functional of the Poisson random
measure N(-) (called v(-) the Lévy measure of ji) 60
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Normalized Random Measures (NRM) An NBM is obtained 1810 1210 0211 04/11 0611 08/11 10/11 12111 F|gure 3: Training log-likelihoods mflugnced by the subsam-
ov normalizing the CRM 7 as: A normalized aener pling rate ¢q. From top-down, left to right are the results on
I¥ 9 G mmg r I/\LIGG. 5 _n ﬁ)RM L mg r Figure 2: Topic evolution on Twitter. Words in red have in- ICML, JMLR, TPAMI, Person, Twitter;, Twittery, Twitters and
alized Gamma process (NGG) Is a with Levy measuré  creased, and blue decreased. BDT datasets, respectively.

being 7ij(dx) b>0,0<a<l.

Normalized Generalized Gamma Process (NGG): A normal-
ized generalized Gamma process (NGG) is an NRM with Lévy

measure being t1+aH(d$) where 0 < a < 1,b > 0.

] Theorem 1 The time dependent random measures represented in Figure 4 are equivalent. Furthermore, both resulting NRMs 1.,’s
3 The three Dependency Operations are equal to:

/! — (qm ]'“J) <X> T A 1
Superposition of NRMs: Given n independent NRMSs 41, - - - , uun, Hom, = E :Z (77 (%) m—j k), m >
" . j'=1 ,uj
on X, the superposition (&) is:

where ¢~ i is the random measure with Lévy measure ¢"Jv(dt,dz) (v(dt,dx) is the Lévy measure of ii). T,,_ (1) denotes point
H1D 2 @ © i 5= CLL T Copt2 + - F Cnfin - transition on . for (m — j) times .

where the weights ¢, = fmf%g) and [i,, Is the unnormalized
) 7]

random measures correspoﬁding to L.

Subsampling of NRMs: Given a NRM ;1 = > 72, .6y, On X,

and a Bernoulli parameter ¢ € |0, 1], the subsampling of u, is
defined as

=2

kzkl

where z;. ~ Bernoulli(q) are Bernoulli random variables with ac-
ceptance rate gq.

Point transition of NRMs: Givena NRM i = 77 | 7109, on X,
the point transition of 1, is to draw atoms 9,’\C from a transformed
base measure to yield a new NRM as

O

T(p) = Zrk%;{ .

k=1

W,

4 Sampling

Ny

The statistics we are interested in are: tn 3l t2
* vy the customer i in the jth restaurant. Figure 4: The time dependent topic model. The left plot corresponds to directly manipulating on normalized random measures, the
® sp,ji- the dish that z,,;; is eating. right one corresponds to manipulating on completely random measures. T: Point transition; S%: Subsampling with acceptance rate g¢;
° n;nk: n;’nk — Z] ZT 5¢mjr:k’ the number of customers in M/Tn D SuperpOSItlon. Here m =n — 1 in the flgureS.
eating dish k.
® fim = Y Jnk00,s + Fian = 2 I 100, - Generative Process:
e Generating independent NRMs ., for time frame m =1,--- , n:
At each time frame m, we do:
. L | H, 1o ~ NRM(Mo, ng, ) (1)
e Slice sample J,,,;. (ends up finite jumps).
e Subsample J’ ol by inheriting from .J, ..., m’ < m with Bernoulli where H(-) = MyPy(-). My is the total mass for u,, and P, is the base distribution. 7 is the set of hyperparameters of the
trials. corresponding NRM.
e Construct p;, by normalizing J/ .. e Generating dependent NRMs 47, (from p,, and /), for time frame m > 1:
e Sample s,,;; using a generalized Blackwell-MacQueen sam- . a0
pling scheme for the hierarchical NRM. g, = TS bty —1)) o (2)
e Sample n; ;. by simulating a generalized Chinese restaurant e Generating hierarchical NRM mixtures (i, j, 01 i» i) for time frame m = 1,--- | n, document j = 1,- -+ , Ny, word i = 1, - -+ , W,,.:
process for the NRM.
_ tm; = NRM(Mip, 1, 1), (3)
5 EXperlmentS m]z|ﬂmj ~ Hmj; wm]zlem]i ~ 90("‘9mji)
Evaluated on 9 datasets including news, blogs, academic and where M, is the total mass for x,,, go(-|0), ;i) denotes the density function to generate data z,,,;; from atom 6,,, ;.

Twitter collections. See Figure 1, 2, 3 for demonstration and
Table 1 for comparison.
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