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Abstract

We unify slice sampling and Hamiltonian Monte Carlo (HMC) sampling, demon-
strating their connection via the Hamiltonian-Jacobi equation from Hamiltonian
mechanics. This insight enables extension of HMC and slice sampling to a broader
family of samplers, called Monomial Gamma Samplers (MGS). We provide a
theoretical analysis of the mixing performance of such samplers, proving that in
the limit of a single parameter, the MGS draws decorrelated samples from the
desired target distribution. We further show that as this parameter tends toward this
limit, performance gains are achieved at a cost of increasing numerical difficulty
and some practical convergence issues. Our theoretical results are validated with
synthetic data and real-world applications.

1 Introduction

Markov Chain Monte Carlo (MCMC) sampling [1] stands as a fundamental approach for probabilistic
inference in many computational statistical problems. In MCMC one typically seeks to design
methods to efficiently draw samples from an unnormalized density function. Two popular auxiliary-
variable sampling schemes for this task are Hamiltonian Monte Carlo (HMC) [2, 3] and the slice
sampler [4]. HMC exploits gradient information to propose samples along a trajectory that follows
Hamiltonian dynamics [3], introducing momentum as an auxiliary variable. Extending the random
proposal associated with Metropolis-Hastings sampling [4], HMC is often able to propose large
moves with acceptance rates close to one [2]. Recent attempts toward improving HMC have leveraged
geometric manifold information [5] and have used better numerical integrators [6]. Limitations of
HMC include being sensitive to parameter tuning and being restricted to continuous distributions.
These issues can be partially solved by using adaptive approaches [7, 8], and by transforming sampling
from discrete distributions into sampling from continuous ones [9, 10].

Seemingly distinct from HMC, the slice sampler [4] alternates between drawing conditional samples
based on a target distribution and a uniformly distributed slice variable (the auxiliary variable). One
problem with the slice sampler is the difficulty of solving for the slice interval, i.e., the domain of
the uniform distribution, especially in high dimensions. As a consequence, adaptive methods are
often applied [4]. Alternatively, one recent attempt to perform efficient slice sampling on latent
Gaussian models samples from a high-dimensional elliptical curve parameterized by a single scalar
[11]. It has been shown that in some cases slice sampling is more efficient than Gibbs sampling and
Metropolis-Hastings, due to the adaptability of the sampler to the scale of the region currently being
sampled [4].

Despite the success of slice sampling and HMC, little research has been performed to investigate
their connections. In this paper we use the Hamilton-Jacobi equation from classical mechanics to
show that slice sampling is equivalent to HMC with a (simply) generalized kinetic function. Further,
we also show that different settings of the HMC kinetic function correspond to generalized slice
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sampling, with a non-uniform conditional slicing distribution. Based on this relationship, we develop
theory to analyze the newly proposed broad family of auxiliary-variable-based samplers. We prove
that under this special family of distributions for the momentum in HMC, as the distribution becomes
more heavy-tailed, the one-step autocorrelation of samples from the target distribution converges
asymptotically to zero, leading to potentially decorrelated samples. While of limited practical impact,
this theoretical result provides insights into the properties of the proposed family of samplers. We
also elaborate on the practical tradeoff between the increased computational complexity associated
with improved theoretical sampling efficiency. In the experiments, we validate our theory on both
synthetic data and with real-world problems, including Bayesian Logistic Regression (BLR) and
Independent Component Analysis (ICA), for which we compare the mixing performance of our
approach with that of standard HMC and slice sampling.

2 Solving Hamiltonian dynamics via the Hamilton-Jacobi equation

A Hamiltonian system consists of a kinetic function K (p) with momentum variable p € R, and a
potential energy function U (x) with coordinate 2 € R. We elaborate on multivariate cases in the
Appendix. The dynamics of a Hamiltonian system are completely determined by a set of first-order
Partial Differential Equations (PDEs) known as Hamilton’s equations [12]:
dp _ OH(w,p,7) Oz _ O0H(z,p,T)
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where H(x,p,7) = K(p(7)) + U(x(7)) is the Hamiltonian, and 7 is the system time. Solving
(1) gives the dynamics of 2(7) and p(7) as a function of system time 7. In a Hamiltonian system
governed by (1), H(-) is a constant for every 7 [12]. A specified H (-), together with the initial point
{z(0), p(0)}, defines a Hamiltonian trajectory {{x(7),p(7)} : V7}, in {x, p} space.

(D

Itis well known that in many practical cases, a direct solution to (1) may be difficult [13]. Alternatively,
one might seek to transform the original HMC system { H (-), z, p, 7 } to a dual space { H'(-), 2, p’, 7}
in hope that the transformed PDEs in the dual space becomes simpler than the original PDEs in
(1). One promising approach consists of using the Legendre transformation [12]. This family of
transformations defines a unique mapping between primed and original variables, where the system
time, 7, is identical. In the transformed space, the resulting dynamics are often simpler than the
original Hamiltonian system.

An important property of the Legendre transformation is that the form of (1) is preserved in the new
space [14], i.e., Op' /0T = —O0H' (2, p', 7)/0x’ ,02' /OT = OH' (2, p', 7)/Op’ . To guarantee a valid
Legendre transformation between the original Hamiltonian system { H(+), x, p, 7} and the transformed
Hamiltonian system {H'(-), 2’,p’, 7}, both systems should satisfy the Hamilton’s principle [13],
which equivalently express Hamilton’s equations (1). The form of this Legendre transformation is not
unique. One possibility is to use a generating function approach [13], which requires the transformed
variables to satisfy p - 9x/07 — H(x,p,7) = p' - 02’ /0T — H(«',p',7) + dG(z,2',p', T)/dT,
where dG(x,2',p’, 7)/dr follows from the chain rule and G(-) is a Type-2 generating function
defined as G(-) & —z’-p' + S(x, p', 7) [14], with S(z, p’, 7) being the Hamilton’s principal function
[15], defined below. The following holds due to the independency of x, ' and p’ in the previous
transformation (after replacing G(-) by its definition):

9S(z,p',7) ,_ 08z, p',7) 98(z,p', 7)
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We then obtain the desired Legendre transformation by setting H'(z’,p’,7) = 0. The resulting

(2) is known as the Hamilton-Jacobi equation (HJE). We refer the reader to [13, 12] for extensive
discussions on the Legendre transformation and HJE.

H'(z',p',7) = H(x,p,T) + (2)

Recall from above that the Legendre transformation preserves the form of (1). Since H' (', p’, 7) = 0,
{a',p'} are time-invariant (constant for every 7). Importantly, the time-invariant point {z’, p’} corre-
sponds to a Hamiltonian trajectory in the original space, and it defines the initial point {«(0), p(0)}
in the original space {x,p}; hence, given {2/, p’}, one may update the point along the trajectory
by specifying the time 7. A new point {«(7),p(7)} in the original space along the Hamiltonian
trajectory, with system time 7, can be determined from the transformed point {z’, p’} via solving (2).

One typically specifies the kinetic function as K (p) = p? [2], and Hamilton’s principal function as
S(z,p',7) = W(x) — p't, where W(z) is a function to be determined (defined below). From (2),



and the definition of S(-), we can write
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where the second equality is obtained by replacing H (z,p,7) = U(xz(7)) + K(p(7)) and the third
equality by replacing p from (2) into K(p(7)). From (3), p’ = H(z,p, ) represents the total
Hamiltonian in the original space {x, p}, and uniquely defines a Hamiltonian trajectory in {z, p}.

Define X £ {x : H(-) — U(x) > 0} as the slice interval, which for constant p’ = H(z,p,7)
corresponds to a set of valid coordinates in the original space {x, p}. Solving (3) for W (x) gives
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where Z,,;, = min{z : € X} and C'is a constant. In addition, from (2) we have

’ z(7)
L = OS(x,p',7) _ OW(x) -7 = 1/ flz)"2dz— 7, (5)
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where the second equality is obtained by substituting S(-) by its definition and the third equality is

obtained by applying Fubini’s theorem on (4). Hence, for constant {2/, p" = H(z, p, 7)}, equation
(5) uniquely defines x(7) in the original space, for a specified system time 7.

3 Formulating HMC as a Slice Sampler 141(0),

Pria (0)
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3.1 Revisiting HMC and Slice Sampling

Suppose we are interested in sampling a random variable = from | x4(71), pe(T2)
an unnormalized density function f(z) o exp[—U(x)], where  ,(0), p,(0) z

U (x) is the potential energy function. Hamiltonian Monte Carlo

(HMC) augments the target density with an auxiliary momentum Figure 1: Representation of HMC
random variable p, that is independent of . The distribution of p sampling. Points {7¢(0),p:(0)}
is specified as o exp[—K (p)], where K (p) is the kinetic energy ~and {z;11(0), pt+1(0)} represent
function. Define H(z,p) = U(x) + K(p) as the Hamiltonian. HMC samples at iterations ¢ and
We have omitted the dependency of H(-), = and p on the system ¢ + 1, respectively. The trajecto-
time 7 for simplicity. HMC iteratively performs dynamic evoly- ties fort and ¢ + 1 correspond to
ing and momentum resampling steps, by sampling z, from the ~distinct Hamiltonian levels H,(:)
target distribution and p, from the momentum distribution (Gaus- and H4q (+), denoted as black and
sian as K (p) = p?), respectively, for t = 1,2, ... iterations. Ted lines, respectively.

Figure 1 illustrates two iterations of this procedure. Starting

from point {x+(0), p:(0)} at the ¢-th (discrete) iteration, HMC leverages the Hamiltonian dynamics,
governed by Hamilton’s equations in (1) to propose the next sample {x;(7;), p+(7¢)}, at system time
7¢. The position in HMC at iteration ¢ + 1 is updated as x;1(0) = x(7¢) (dynamic evolving). A new
momentum p; 1 (0) is resampled independently from a Gaussian distribution (assuming K (p) = p?),
establishing the next initial point {x:11(0),p++1(0)} for iteration ¢ + 1 (momentum resampling).
The latter point corresponds to the initial point of a new trajectory because the Hamiltonian H (-) is
commensurately updated. This means that trajectories correspond to distinct values of H (-).

Typically, numerical integrators such as the leap-frog method [2] are employed to numerically
approximate the Hamiltonian dynamics. In practice, a random number (uniformly drawn from a
fixed range) of discrete numerical integration steps (leap-frog steps) are often used (corresponding to
random time 7; along the trajectory), which has been shown to have better convergence properties
than a single leap-frog step [16]. The discretization error introduced by the numerical integration is
corrected by a Metropolis Hastings (MH) step.

Slice sampling is conceptually simpler than HMC. It augments the target unnormalized density f(x)
with a random variable y, with joint distribution expressed as p(z,y) = Z; *, s.t. 0 < y < f(x),
where Z; = [ f(z)dx is the normalization constant, and the marginal distribution of z exactly
recovers the target normalized distribution f(x)/Z;. To sample from the target density, slice sampling
iteratively performs a conditional sampling step from p(x|y) and sampling a slice from p(y|z). At
iteration ¢, starting from z;, a slice y; is uniformly drawn from (0, f(z;)). Then, the next sample
Z¢41, at iteration ¢ + 1, is uniformly drawn from the slice interval {x : f(z) > y.}.



HMC and slice sampling both augment the target distribution with auxiliary variables and can
propose long-range moves with high acceptance probability.

3.2 Formulating HMC as a Slice Sampler

Consider the dynamic evolving step in HMC, i.e., {2+(0),p+(0)} — {x(7),p¢(7)} in Figure 1.
From Section 2, the Hamiltonian dynamics in {x, p} space with initial point {z(0),p(0)} can be
performed by mapping to {2/, p'} space and updating {z(7),p(7)} via selecting a 7 and solving
(5). As we show in the Appendix, from (5) and in univariate cases* the Hamiltonian dynamics has
period [, [H(-)—U(z)] ~2dz and is symmetric along p = 0 (due to the symmetric form of the kinetic
function). Also from (5), the system time, 7, is specified uniformly sampled from a half-period of

the Hamiltonian dynamics. i.e., 7 ~ Uniform (fx’, —o'+ 1 [([H() - U(z)r%). Intuitively, '
is the “anchor” of the initial point {z(0), p(0)}, w.r.t. the start of the first half period, i.e, when
Jx[H() — U(z)]"2 = 0. Further, we only need consider half a period because for a symmetric

kinetic function, K (p) = p?, the Hamiltonian dynamics for the two half-periods are mirrored [14].
For the same reason, Figure 1 only shows half of the {z, p} space, when p > 0.

Given the sampled 7 and the constant {2, p'}, equation (5) can be solved for 2* £ z(7), i.e., the
value of x at time 7. Interestingly, the integral in (5) can be interpreted as (up to normalization
constant) a cumulative density function (CDF) of z(7). From the inverse CDF transform sampling
method, uniformly sampling 7 from half of a period and solving for z* from (5), are equivalent to
directly sampling =* from the following density

p(a*|H()) x [H() = U] "%, st H()=U@*) 2 0. ®)

We note that this transformation does not make the analytic solution of x(7) generally tractable.
However, it provides the basic setup to reveal the connection between the slice sampler and HMC.

In the momentum resampling step of HMC, i.e., {x+(7), p+(7)} — {x++1(0), p+4+1(0)} in Figure 1,
and using the previously described kinetic function, K (p) = p?, resampling corresponds to drawing
p from a Gaussian distribution [2].

The algorithm to analytically sample from the HMC (analytic HMC) proceeds as follows: at iteration
t, momentum p; is drawn from a Gaussian distribution. The previously sampled value of z;_; and
the newly sampled p; yield a Hamiltonian H;(-). Then, the next sample z; is drawn from (6). This
procedure relates HMC to the slice sampler. To clearly see the connection, we denote 1, = e~ 7+("),
Instead of directly sampling {p, x} as just described, we sample {y, 2} instead. By substituting Hy(-)
with y; in (6), the conditional updates for this new sampling procedure can be rewritten as below,
yielding the HMC slice sampler (HMC-SS), with conditional distributions defined as

1
Sampling a slice: p(y¢|z;) = W[log flz) —logy ™%, st 0<y: < flx), (1)

.. . 1 —a
Conditional sampling:  p(z¢41]y:) = mﬂog fl@i) = logy]' ™", st fz) >y, (8)
t

where a = 1/2 (other values of a considered below), f(z) = e~Y(*) is an unnormalized density, and
Zy = [ f(z)dx and Z2(y) £ [;,)s,[log f(x) —log y]~ 2 dx are the normalization constants.

Comparing these two procedures, analytic HMC and HMC-SS, we see that the resampling momentum
in analytic HMC corresponds to sampling a slice in HMC-SS. Further, the dynamic evolving in
HMC corresponds to the conditional sampling in MG-SS. We have thus shown that HMC can be
equivalently formulated as a slice sampler procedure via (7) and (8).

3.3 Reformulating Standard Slice Sampler from HMC-SS

In standard slice sampling (described in Section 3.1), both conditional sampling and sampling a
slice are drawn from uniform distributions. However those for HMC-SS in (7) and (8) represent
non-uniform distributions. Interestingly, if we change a in (7) and (8) froma = 1/2toa = 1, we
obtain the desired uniform distributions for standard slice sampling. This key observation leads us to
consider a generalized form of the kinetic function for HMC, described below.

*For multidimensional cases, the Hamiltonian dynamics are semi-periodic, yet a similar conclusion still
holds. Details are discussed in the Appendix.



Consider the generalized family of kinetic functions K (p) = |p|'/* with a > 0. One may rederive
equations (3)-(8) using this generalized kinetic energy. As shown in the Appendix, these equations
remained unchanged, with the update that each isolated 2 in these equations is replaced by 1/a, and
—1/2 is replaced by a — 1.

Sampling p (for the momentum resampling step) with the generalized kinetics, corresponds to drawing
p from 7(p;m,a) = 3m~*/T'(a + 1) exp[—|p|*/*/m], with m = 1. All the formulation in the paper
still holds for arbitrary m, see Appendix for details. We denote this distribution the monomial Gamma
(MG) distribution, MG(a, m), where m is the mass parameter, and a is the monomial parameter.
Note that this is equivalent to the exponential power distribution with zero-mean, described in [17].
We summarize some properties of the MG distribution in the Appendix.

To generate random samples from the MG distribution, one can draw G ~ Gamma(a, m) and a
uniform sign variable S ~ {—1, 1}, then S - G* follows the MG(a, m) distribution. We call the HMC
sampler based on the generalized kinetic function, K (p; a, m): Monomial Gamma Hamiltonian
Monte Carlo MG-HMC). The algorithm to analytically sample from the MG-HMC is shown
in Algorithm 1. The only difference between this procedure and the previously described is the
momentum resampling step, in that for analytic HMC, p is drawn Gaussian instead of MG(a, m).
However, note that the Gaussian distribution is a special case of MG(a, m) when a = 1/2.

Algorithm 1: MG-HMC with HIE Algorithm 2: MG-SS
fort =1t T do fort =11 T do
Resample momentum: p; ~ MG(m, a). Sampling a slice:
Compute Hamiltonian: H; = U(zi—1) + K (pt). Sample y; from (7).
FindX 2 {z: 2 € R;U(x) < Hi()}. Conditional sampling:
Dynamic evolving: x| H;(-) oc [H(-) — U(z:)]* ™' sz € X Sample z; from (8).

Interestingly, when a = 1, the Monomial Gamma Slice sampler (MG-SS) in Algorithm 2 recovers
exactly the same update formulas as in standard slice sampling, described in Section 3.1, where the
conditional distributions in (7) and (8) are both uniform. When a # 1, we have to iteratively alternate
between sampling from non-uniform distributions (7) and (8), for both auxiliary (slicing) variable y
and target variable x.

Using the same argument from the convergence analysis of standard slice sampling [4], the iterative
sampling procedure in (7) and (8), converges to an invariant joint distribution (detailed in the
Appendix). Further, the marginal distribution of x recovers the target distribution as f(x)/Z;, while
the marginal distribution of y is given by p(y) = Z»(y)/[I'(a)Z1].

The MG-SS can be divided into three broad regimes: 0 < a < 1,a = 1 and a > 1 (illustrated in the
Appendix). When 0 < a < 1, the conditional distribution p(y:|z;) is skewed towards the current
unnormalized density value f(z;). The conditional draw of p(x:41|y:) encourages taking samples
with smaller density value (inefficient moves), within the domain of the slice interval X. On the other
hand, when a > 1, draws of y; tend to take smaller values, while draws of x;; encourage sampling
from those with large density function values (efficient moves). The case a = 1 corresponds to the
conventional slice sampler. Intuitively, setting a to be small makes the auxiliary variable, y;, stay
close to f(x¢), thus f(z:41) is close to f(z:). As aresult, a larger a seems more desirable. This
intuition is justified in the following sections.

4 Theoretical analysis

We analyze theoretical properties of the MG sampler. All the proofs as well as the ergodicity
properties of analytic MG-SS are given in the Appendix.

One-step autocorrelation of analytic MG-SS We present results on the univariate distribution
case: p(z) x e~ V@) We first investigate the impact of the monomial parameter a on the one-step
autocorrelation function (ACF), p,(1) £ p(zs,2441) = [Exirey — (Ex)?]/Var(x), as a — oc.
Theorem 1 characterizes the limiting behavior of p(xs, z141).

Theorem 1 For a univariate target distribution, i.e. exp[—U(x)] has finite integral over R, un-
der certain regularity conditions, the one-step autocorrelation of the MG-SS parameterized by a,
asymptotically approaches zero as a — o0, i.e., limg_0 p(1) = 0.



In the Appendix we also show that lim, o p(yt, yt41) = 0. In addition, we show that p(yt, ye+n)
is a non-negative decreasing function of the time lag in discrete steps h.

Effective sample size The variance of a Monte Carlo estimator is determined by its Effective
Sample Size (ESS) [18], defined as ESS = N/(1+2x >";7, p.(h)), where N is the total number of
samples, p, (h) is the h-step autocorrelation function, which can be calculated in a recursive manner.
We prove in the Appendix that p,.(h) is non-negative. Further, assuming the MG sampler is uniformly
ergodic and p,.(h) is monotonically decreasing, it can be shown that lim,_, ., ESS = N. When ESS
approaches full sample size, IV, the resulting sampler delivers excellent mixing efficiency [5]. Details
and further discussion are provided in the Appendix.

Case study To examine a specific 1D example, we consider sampling from the exponential
distribution, Exp(6), with energy function given by U(x) = z/60, where > 0. This case has
analytic p, (h) and ESS. After some algebra (details in the Appendix),

1 1 Na i) -0
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These results are in agreement with Theorem 1 and related arguments of ESS and monotonicity of

autocorrelation w.r.t. a. Here &, () denotes the expectation of the h-lag sample, starting from any

Zn(x

xo. The relative difference xoi‘i)e_e decays exponentially in h, with a factor of %ﬂ In fact, the p,.(1)

for the exponential family class of models introduced in [19], with potential energy U (z) = 2% /6,
where x > 0,w, § > 0, can be analytically calculated. The result, provided in the Appendix, indicates
that for this family, p, (1) decays at a rate of O(a™1).

MG-HMC mixing performance In theory, the analytic MG-HMC (the dynamics in (5) can be
solved exactly) is expected to have the same theoretical properties of the analytic MG-SS for unimodal
cases, since they are derived from the same setup. However, the mixing performance of the two
methods could differ significantly when sampling from a multimodal distribution, due to the fact
that the Hamiltonian dynamics may get “trapped” into a single closed trajectory (one of the modes)
with low energy, whereas the analytic MG-SS does not suffer from this problem as is able to sample
from disjoint slice intervals (one per mode). This is a well-known property of slice sampling [4] that
arises from (7) and (8). However, if a is large enough, as we show in the Appendix, the probability of
getting into a low-energy level associated with more than one Hamiltonian trajectory, which restrict
movement between modes, is arbitrarily small. As a result, the analytic MG-HMC with large value
of a is able to approach the stationary mixing performance of MG-SS.

5 MG sampling in practice

MG-HMC with numerical integrator In practice, MG-SS (performing Algorithm 2) requires: 1)
analytically solving for the slice interval X, which is typically infeasible for multivariate cases [4]; or
2) analytically computing the integral Z5(y) over X, implied by the non-uniform conditionals from
MG-SS. These are usually computationally infeasible, though adaptive estimation of X could be done
using schemes like “doubling” and “shrinking” strategies from the slice sampling literature [4].

It is more convenient to perform approximate MG-HMC using a numerical integrator like in traditional
HMC, i.e., in each iteration, the momentum p is first initialized by sampling from MG(m, a), then
second order Stormer-Verlet integration [2] is performed for the Hamiltonian dynamics updates:

Pir1/2 =Pt — 5VU(Xt), X1 =Xt + €VE(Pry1/2)s Pi+1 = Pey1y2 — 5VU(Xe41), (9)

where VK (p) = sign(p) - -=-|p|"/*~!. When a = 1, [VK(p)]q = 1/m for any dimension d,
independent of x and p. To avoid moving on a grid when a = 1, we employ a random step-size e
from a uniform distribution within non-negative range (r1,r2), as suggested in [2].

No free lunch With a numerical integrator for MG-HMC, however, the argument about choosing
large a (of great theoretical advantage as discussed in the previous section) may face practical issues.

First, a large value of a will lead to a less accurate numerical integrator. This is because as a gets
larger, the trajectory of the total Hamiltonian becomes “stiffer”, i.e., that the maximum curvature
becomes larger. When a > 1/2, the Hamiltonian trajectory in the phase space, (X, p), has at least
2P (D denotes the total dimension) non-differentiable points (“turnovers™), at each intersection
point with the hyperplane p(¥ = 0,d € {1--- D}. As a result, directly applying Stormer-Verlet
integration would lead to high integration error as D becomes large.



Second, if the sampler is initialized in the tail region of a light-tailed target distribution, MG-HMC
with a > 1 may converge arbitrarily slow to the true target distribution, i.e., the burn-in period could
take arbitrarily long time. For example, with a > 1, VU (x() can be very large when 1z is in the
light-tailed region, leading the update xo + VK (po + VU (z0)) to be arbitrary close to xo, i.e., the
sampler does not move.

To ameliorate these issues, we provide mitigating strategies. For the first (numerical) issue, we
propose two possibilities: 1) As an analog to the “reflection” action of [2], in (9), whenever the
d-th dimension(s) of the momentum changes sign, we “recoil” the point of these dimension(s) to the
previous iteration, and negate the momentum of these dimension(s), i.e., ng_)l = ng) , pgf_)l = —pid).
2) Substituting the kinetic function K (p) with a “softened” kinetic function, and use importance
sampling to sample the momentum. The details and comparison between the “reflection” action and

“softened” kinetics are discussed in the Appendix.

For the second (convergence) issue, we suggest using a step-size decay scheme, e.g., € =
max(e1p’, €). In our experiments we use (€1, p) = (10¢,0.9), where ¢ is problem-specific. This ap-
proach empirically alleviates the slow convergence problem, however we note that a more principled
way would be adaptively selecting a during sampling, which is left for further investigation.

As a compromise between theoretical gains and practical issues, we suggest setting a = 1 (HMC
implementation of a slice sampler) when the dimension is relatively large. This is because in our
experiments, when a > 1, numerical errors and convergence issues tend to overwhelm the theoretical
mixing performance gains described in Section 4.
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6 Experiments

6.1 Simulation studies

1D unimodal problems We first evaluate the performance of the MG sampler with several univariate
distributions: 1) Exponential distribution, U(x) = 6x,2 > 0. 2) Truncated Gaussian, U(z) =
022,z > 0. 3) Gamma distribution, U(x) = —(r — 1) logx + fz. Note that the performance of
the sampler does not depend on the scale parameter § > 0. We compare the empirical p, (1) and
ESS of the analytic MG-SS and MG-HMC with their theoretical values. In the Gamma distribution
case, analytic derivations of the autocorrelations and ESS are difficult, thus we resort to a numerical
approach to compute p, (1) and ESS. Details are provided in the Appendix. Each method is run for
30,000 iterations with 10,000 burn-in samples. The number of leap-frog steps is set to be uniformly
drawn from (100 — 7,100 + {) with [ = 20, as suggested by [16]. We also compared MG-HMC
(a = 1) with standard slice sampling using doubling and shrinking scheme [4] As expected, the
resulting ESS (not shown) for these two methods is almost identical. The experiment settings and
results are provided in the Appendix. The acceptance rates decrease from around 0.98 to around 0.77
for each case, when a grows from 0.5 to 4, as shown in Figure 2(a)-(d),

The results for analytic MG-SS match well with the theoretical results, however MG-HMC seems to
suffer from practical difficulties when a is large, evidenced by results gradually deviating from the
theoretical values. This issue is more evident in the Gamma case (see Figure 2(e)), where p, (1) first
decreases then increases. Meanwhile, the acceptance rates decreases from 0.9 to 0.5.

1D and 2D bimodal problems We further conduct simulation studies to evaluate the efficiency of
MG-HMC when sampling 1D and 2D multimodal distributions. For the univariate case, the potential
energy is given by U(x) = 2* — 22%; whereas U(x) = —0.2 x (21 + 22)? + 0.01 x (21 + 22)* —
0.4 x (21 — w2)? in the bivariate case. We show in the Appendix that if the energy functions are
symmetric along x = C', where C' is a constant, in theory, the analytic MG-SS will have ESS equal
to the total sample size. However, as shown in Section 4, the analytic MG-HMC is expected to have
an ESS less than its corresponding analytic MG-SS, and the gap between the analytic MG-HMC



and analytic MG-SS counterpart should decrease with a. As a result, despite numerical difficulties,
we expect the MG-HMC based on numerical integration to have better mixing performance with
large a. To verify our theory, we run MG-HMC for a = {0.5, 1, 2} for 30,000 iterations with 10,000
burn-in samples. The parameter settings and the acceptance rates are detailed in the Appendix.
Empirically, we find that the efficiency of HMC is significantly improved with a large a as shown in
Table 1, which coincides with the theory in Section 4. From Figure 3, we observe that the MG-HMC
sampler with monomial parameter a = {1, 2} performs better at jumping between modes of the
target distribution, when compared to standard HMC, which confirms the theory in Section 4. We
also compared MG-HMC (a = 1) with standard SS [4]. As expected, in the 1D case, the standard SS
yields ESS close to full sample size, while in 2D case, the resulting ESS is lower than MG-HMC
(a = 1) (details are provided in the Appendix).

6.2 Real data Figure 3: 10 MC samples Table 1: ESS of MG-HMC
by MG-HMC from a 2D for 1D and 2D bimodal dis-

Bayesian logistic regression We evalu- distribution and different a. tributions.

ate our methods on 6 real-world datasets

from the UCI repository [20]: German

credit (G), Australian credit (A), Pima In-

dian (P), Heart (H), Ripley (R) and Car-
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variance. Gaussian priors A(0, 100I)
are imposed on the regression coefficients. We draw 5000 iterations with 1000 burn-in samples for
each experiment. The leap-frog steps are set to be uniformly drawn from (100 — [, 100 + 1) with
I = 20. Other experimental settings (m and €) are provided in the Appendix.

Results in terms of minimum ESS are summarized in Table 2. Prediction accuracies estimated
via cross-validation are almost identical all across (reported in the Appendix). It can be seen that
MG-HMC with a = 1 outperforms (in terms of ESS) the other two settings with @ = 0.5 and a = 2,
indicating increased numerical difficulties counter the theoretical gains when a becomes large. This
can be also seen by noting that the acceptance rates drop from around 0.9 to around 0.7 as a increases
from 0.5 to 2. The dimensionality also seems to have an impact on the optimal setting of a, since in
the high-dimensional dataset Cavaran, the improvement of MG-HMC with a = 1 is less significant
compared with other datasets, and a = 2 seems to suffer more of numerical difficulties. Comparisons
between MG-HMC (a = 1) and standard slice sampling are provided in the Appendix. In general,
standard slice sampling with adaptive search underperforms relative to MG-HMC (a = 1).

Table 2: Minimum ESS for each method (dimensionality indicated in parenthesis). Left: BLR; Right: ICA

Dataset (dim) A (15) G (25 H(14) P®) R C@®D ICA (25)
a=05 3124 3447 3524 3434 3317 33 (median 3987) 2677
a=1 4308 4353 4591 4664 4226 36 (median 4531) 3029
a=2 1490 3646 4315 4424 1490 7 (median 740) 1534

ICA We finally evaluate our methods on the MEG [22] dataset for Independent Component Analysis
(ICA), with 17,730 time points and 25 feature dimension. All experiments are based on 5000 MCMC
samples. The acceptance rates for a = (0.5, 1,2) are (0.98,0.97,0.77). Running time is almost
identical for different a. Settings (including m and €) are provided in the Appendix. As shown in
Table 2, when a = 1, MG-HMC has better mixing performance compared with other settings.

7 Conclusion

We demonstrated the connection between HMC and slice sampling, introducing a new method for
implementing a slice sampler via an augmented form of HMC. With few modifications to standard
HMC, our MG-HMC can be seen as a drop-in replacement for any scenario where HMC and its
variants apply, for example, Hamiltonian Variational Inference (HVI) [23]. We showed the theoretical
advantages of our method over standard HMC, as well as numerical difficulties associated with it.
Several future extensions can be explored to mitigate numerical issues, e.g., performing MG-HMC
on the Riemann manifold [5] so that step-sizes can be adaptively chosen, and using a high-order
symplectic numerical method [24, 25] to reduce the discretization error introduced by the integrator.
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