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The Dirichlet process and its extension, the Pitman–Yor process, are stochastic processes 
that take probability distributions as a parameter. These processes can be stacked up to 
form a hierarchical nonparametric Bayesian model. In this article, we present efficient 
methods for the use of these processes in this hierarchical context, and apply them to 
latent variable models for text analytics. In particular, we propose a general framework for 
designing these Bayesian models, which are called topic models in the computer science 
community. We then propose a specific nonparametric Bayesian topic model for modelling 
text from social media. We focus on tweets (posts on Twitter) in this article due to 
their ease of access. We find that our nonparametric model performs better than existing 
parametric models in both goodness of fit and real world applications.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We live in the information age. With the Internet, information can be obtained easily and almost instantly. This has 
changed the dynamic of information acquisition, for example, we can now (1) attain knowledge by visiting digital libraries, 
(2) be aware of the world by reading news online, (3) seek opinions from social media, and (4) engage in political debates 
via web forums. As technology advances, more information is created, to a point where it is infeasible for a person to 
digest all the available content. To illustrate, in the context of a healthcare database (PubMed), the number of entries 
has seen a growth rate of approximately 3000 new entries per day in the ten-year period from 2003 to 2013 [78]. This 
motivates the use of machines to automatically organise, filter, summarise, and analyse the available data for the users. 
To this end, researchers have developed various methods, which can be broadly categorised into computer vision [54,57], 
speech recognition [72,36], and natural language processing (NLP) [59,38]. This article focuses on text analysis within NLP.

In text analytics, researchers seek to accomplish various goals, including sentiment analysis or opinion mining [68,50], 
information retrieval [58], text summarisation [52], and topic modelling [5]. To illustrate, sentiment analysis can be used to 
extract digestible summaries or reviews on products and services, which can be valuable to consumers. On the other hand, 
topic models attempt to discover abstract topics that are present in a collection of text documents.
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Topic models were inspired by latent semantic indexing (LSI) [44] and its probabilistic variant, probabilistic latent semantic 
indexing (pLSI), also known as the probabilistic latent semantic analysis (pLSA) [34]. Pioneered by Blei et al. [9], latent Dirichlet 
allocation (LDA) is a fully Bayesian extension of pLSI, and can be considered the simplest Bayesian topic model. The LDA is 
then extended to many different types of topic models. Some of them are designed for specific applications [89,63], some 
of them model the structure in the text [8,17], while some incorporate extra information in their modelling [73,37].

On the other hand, due to the well known correspondence between the Gamma-Poisson family of distributions and the 
Dirichlet-multinomial family, Gamma-Poisson factor models [14] and their nonparametric extensions, and other Poisson-
based variants of non-negative matrix factorisation (NMF) form a methodological continuum with topic models. These NMF 
methods are often applied to text, however, we do not consider these methods here.

This article will concentrate on topic models that take into account additional information. This information can be 
auxiliary data (or metadata) that accompany the text, such as keywords (or tags), dates, authors, and sources; or external 
resources like word lexicons. For example, on Twitter, a popular social media platform, its messages, known as tweets, 
are often associated with several metadata like location, time published, and the user who has written the tweet. This 
information is often utilised, for instance, Kinsella et al. [42] model tweets with location data, while Wang et al. [88] use 
hashtags for sentiment classification on tweets. On the other hand, many topic models have been designed to perform 
bibliographic analysis by using auxiliary information. Most notable of these is the author-topic model (ATM) [74], which, as 
its name suggests, incorporates authorship information. In addition to authorship, the Citation Author Topic model [83] and 
the Author Cite Topic Model [40] make use of citations to model research publications. There are also topic models that 
employ external resources to improve modelling. For instance, He [31] and Lim and Buntine [47] incorporate a sentiment 
lexicon as prior information for a weakly supervised sentiment analysis.

Independent to the use of auxiliary data, recent advances in nonparametric Bayesian methods have produced topic mod-
els that utilise nonparametric Bayesian priors. The simplest examples replace Dirichlet distributions by the Dirichlet process
(DP) [23]. The simplest is hierarchical Dirichlet process LDA (HDP-LDA) proposed by Teh et al. [81] that replaces just the 
document by topic matrix in LDA. One can further extend topic models by using the Pitman–Yor process (PYP) [35] that 
generalises the DP, by replacing the second Dirichlet distribution which generates the topic by word matrix in LDA. This 
includes the work of Sato and Nakagawa [76], Du et al. [19], Lindsey et al. [49], among others. Like the HDP, the PYPs can 
be stacked to form hierarchical Pitman–Yor processes (HPYP), which are used in more complex models. Another fully non-
parametric extension to topic modelling uses the Indian buffet process [2] to sparsify both the document by topic matrix 
and the topic by word matrix in LDA.

Advantages of employing nonparametric Bayesian methods with topic models is the ability to estimate the topic and 
word priors and to infer the number of clusters1 from the data. Using the PYP also allows the modelling of the power-law 
property exhibited by natural languages [26]. These touted advantages have been shown to yield significant improvements 
in performance [13]. However, we note the best known approach for learning with hierarchical Dirichlet (or Pitman–Yor) 
processes is to use the Chinese restaurant franchise [80]. Because this requires dynamic memory allocation to implement 
the hierarchy, there has been extensive research in attempting to efficiently implement just the HDP-LDA extension to LDA 
mostly based around variational methods [82,87,11,75,33]. Variational methods have rarely been applied to more complex 
topic models, as we consider here, and unfortunately Bayesian nonparametric methods are gaining a reputation of being 
difficult to use. A newer collapsed and blocked Gibbs sampler [15] has been shown to generally outperform the variational 
methods as well as the original Chinese restaurant franchise in both computational time and space and in some standard 
performance metrics [13]. Moreover, the technique does appear suitable for more complex topic models, as we consider 
here.

This article, extending the algorithm of Chen et al. [15], shows how to develop fully nonparametric and relatively efficient 
Bayesian topic models that incorporate auxiliary information, with a goal to produce more accurate models that work well 
in tackling several applications. As a by-product, we wish to encourage the use of state-of-the-art Bayesian techniques, and 
also to incorporate auxiliary information, in modelling.

The remainder of this article is as follows. We first provide a brief background on the Pitman–Yor process in Section 2. 
Then, in Section 3, we detail our modelling framework by illustrating it on a simple topic model. We continue through to 
the inference procedure on the topic model in Section 4. Finally, in Section 5, we present an application on modelling social 
network data, utilising the proposed framework. Section 6 concludes.

2. Background on Pitman–Yor process

We provide a brief, informal review of the Pitman–Yor process (PYP) [35] in this section. We assume the readers are 
familiar with basic probability distributions (see [84]) and the Dirichlet process (DP) [23]. In addition, we refer the readers 
to Hjort et al. [32] for a tutorial on Bayesian nonparametric modelling.

1 This is known as the number of topics in topic modelling.
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2.1. Pitman–Yor process

The Pitman–Yor process (PYP) [35] is also known as the two-parameter Poisson–Dirichlet process. The PYP is a two-
parameter generalisation of the DP, now with an extra parameter α named the discount parameter in addition to the 
concentration parameter β . Similar to DP, a sample from a PYP corresponds to a discrete distribution (known as the output 
distribution) with the same support as its base distribution H . The underlying distribution of the PYP is the Poisson–Dirichlet 
distribution (PDD), which was introduced by Pitman and Yor [70].

The PDD is defined by its construction process. For 0 ≤ α < 1 and β > −α, let Vk be distributed independently as 
follows:

(Vk |α,β) ∼ Beta(1 − α,β + kα) , for k = 1,2,3, . . . , (1)

and define (p1, p2, p3, . . . ) as

p1 = V 1 , (2)

pk = Vk

k−1∏
i=1

(1 − V i) , for k ≥ 2 . (3)

If we let p = (p̃1, p̃2, p̃3, . . . ) be a sorted version of (p1, p2, p3, . . . ) in descending order, then p is Poisson–Dirichlet dis-
tributed with parameter α and β:

p ∼ PDD(α,β) . (4)

Note that the unsorted version (p1, p2, p3, . . . ) follows a GEM(α, β) distribution, which is named after Griffiths, Engen and 
McCloskey [69].

With the PDD defined, we can then define the PYP formally. Let H be a distribution over a measurable space (X , B), for 
0 ≤ α < 1 and β > −α, suppose that p = (p1, p2, p3, . . . ) follows a PDD (or GEM) with parameters α and β , then PYP is 
given by the formula

p(x |α,β, H) =
∞∑

k=1

pk δXk (x) , for k = 1,2,3, . . . , (5)

where Xk are independent samples drawn from the base measure H and δXk (x) represents probability point mass concen-
trated at Xk (i.e., it is an indicator function that is equal to 1 when x = Xk and 0 otherwise):

δx(y) =
{

1 if x = y
0 otherwise .

(6)

This construction, Equation (1), is named the stick-breaking process. The PYP can also be constructed using an analogue to 
Chinese restaurant process (which explicitly draws a sequence of samples from the base distribution). A more extensive 
review on the PYP is given by Buntine and Hutter [12].

A PYP is often more suitable than a DP in modelling since it exhibits a power-law behaviour (when α �= 0), which is 
observed in natural languages [26,80]. The PYP has also been employed in genomics [22] and economics [1]. Note that when 
the discount parameter α is 0, the PYP simply reduces to a DP.

2.2. Pitman–Yor process with a mixture base

Note that the base measure H of a PYP is not necessarily restricted to a single probability distribution. H can also be a 
mixture distribution such as

H = ρ1 H1 + ρ2 H2 + · · · + ρn Hn , (7)

where 
∑n

i=1 ρi = 1 and {H1, . . . , Hn} is a set of distributions over the same measurable space (X , B) as H .
With this specification of H , the PYP is also named the compound Poisson–Dirichlet process in Du [17], or the doubly 

hierarchical Pitman–Yor process in Wood and Teh [90]. A special case of this is the DP equivalent, which is also known as 
the DP with mixed random measures in Kim et al. [41]. Note that we have assumed constant values for the ρi , though of 
course we can go fully Bayesian and assign a prior distribution for each of them, a natural prior would be the Dirichlet 
distribution.
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Fig. 1. Graphical model of the HPYP topic model. It is an extension to LDA by allowing the probability vectors to be modelled by PYPs instead of the 
Dirichlet distributions. The area on the left of the graphical model (consists of μ, ν and θ ) is usually referred as topic side, while the right hand side 
(with γ and φ) is called the vocabulary side. The word node denoted by wdn is observed. The notations are defined in Table 1.

2.3. Remark on Bayesian inference

Performing exact Bayesian inference on nonparametric models is often intractable due to the difficulty in deriving the 
closed-form posterior distributions. This motivates the use of Markov chain Monte Carlo (MCMC) methods [24] for ap-
proximate inference. Most notable of the MCMC methods are the Metropolis–Hastings (MH) algorithms [64,30] and Gibbs 
samplers [25]. These algorithms serve as a building block for more advanced samplers, such as the MH algorithms with de-
layed rejection [65]. Generalisations of the MCMC method include the reversible jump MCMC [28] and its delayed rejection 
variant [29] can also be employed for Bayesian inference, however, they are out of the scope in this article.

Instead of sampling one parameter at a time, one can develop an algorithm that updates more parameters in each 
iteration, a so-called blocked Gibbs sampler [51]. Also, in practice we are usually only interested in a certain subset of the 
parameters; in such cases we can sometimes derive more efficient collapsed Gibbs samplers [51] by integrating out the 
nuisance parameters. In the remainder of this article, we will employ a combination of the blocked and collapsed Gibbs 
samplers for Bayesian inference.

3. Modelling framework with hierarchical Pitman–Yor process

In this section, we discuss the basic design of our nonparametric Bayesian topic models using hierarchical Pitman–Yor 
processes (HPYP). In particular, we will introduce a simple topic model that will be extended later. We discuss the general 
inference algorithm for the topic model and hyperparameter optimisation.

Development of topic models is fundamentally motivated by their applications. Depending on the application, a spe-
cific topic model that is most suitable for the task should be designed and used. However, despite the ease of designing 
the model, the majority of time is spent on implementing, assessing, and redesigning it. This calls for a better designing 
cycle/routine that is more efficient, that is, spending less time in implementation and more time in model design and 
development.

We can achieve this by a higher level implementation of the algorithms for topic modelling. This has been made possible 
in other statistical domains by BUGS (Bayesian inference using Gibbs sampling [56]) or JAGS (just another Gibbs sampler 
[71]), albeit with standard probability distributions. Theoretically, BUGS and JAGS will work on LDA; however, in practice, 
running Gibbs sampling for LDA with BUGS and JAGS is very slow. This is because their Gibbs samplers are uncollapsed 
and not optimised. Furthermore, they cannot be used in a model with stochastic processes, like the Gaussian process (GP) 
and DP.

Below, we present a framework that allows us to implement HPYP topic models efficiently. This framework allows us to 
test variants of our proposed topic models without significant reimplementation.

3.1. Hierarchical Pitman–Yor process topic model

The HPYP topic model is a simple network of PYP nodes since all distributions on the probability vectors are modelled 
by the PYP. For simplicity, we assume a topic model with three PYP layers, although in practice there is no limit to the 
number of PYP layers. We present the graphical model of our generic topic model in Fig. 1. This model is a variant of 
those presented in Buntine and Mishra [13], and is presented here as a starting model for illustrating our methods and for 
subsequent extensions.

At the root level, we have μ and γ distributed as PYPs:

μ ∼ PYP(αμ,βμ, Hμ) , (8)

γ ∼ PYP(αγ ,βγ , Hγ ) . (9)

The variable μ is the root node for the topics in a topic model while γ is the root node for the words. To allow arbitrary 
number of topics to be learned, we let the base distribution for μ, Hμ , to be a continuous distribution or a discrete 
distribution with infinite samples.

We usually choose a discrete uniform distribution for γ based on the word vocabulary size of the text corpus. This 
decision is technical in nature, as we are able to assign a tiny probability to words not observed in the training set, which 
eases the evaluation process. Thus Hγ = {· · · , 1 , · · · } where |V| is the set of all word vocabulary of the text corpus.
|V |
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Table 1
List of variables for the HPYP topic model used in this section.

Variable Name Description

zdn Topic Topical label for word wdn .
wdn Word Observed word or phrase at position n in document d.
φk Topic–word distribution Probability distribution in generating words for topic k.
θd Document–topic distribution Probability distribution in generating topics for document d.
γ Global word distribution Word prior for φk .
ν Global topic distribution Topic prior for θd .
μ Global topic distribution Topic prior for ν .
αN Discount Discount parameter for PYP N .
βN Concentration Concentration parameter for PYP N .
HN Base distribution Base distribution for PYP N .
cNk Customer count Number of customers having dish k in restaurant N .

tNk Table count Number of tables serving dish k in restaurant N .
Z All topics Collection of all topics zdn .
W All words Collection of all words wdn .
� All hyperparameters Collection of all hyperparameters and constants.
C All customer counts Collection of all customers counts cNk .
T All table counts Collection of all table counts tNk .

We now consider the topic side of the HPYP topic model. Here we have ν , which is the child node of μ. It follows a PYP 
given ν , which acts as its base distribution:

ν ∼ PYP(αν,βν,μ) . (10)

For each document d in a text corpus of size D , we have a document–topic distribution θd , which is a topic distribution 
specific to a document. Each of them tells us about the topic composition of a document:

θd ∼ PYP(αθd , βθd , ν) , for d = 1, . . . , D . (11)

While for the vocabulary side, for each topic k learned by the model, we have a topic–word distribution φk which tells 
us about the words associated with each topic. The topic–word distribution φk is PYP distributed given the parent node γ , 
as follows:

φk ∼ PYP(αφk , βφk , γ ) , for k = 1, . . . , K . (12)

Here, K is the number of topics in the topic model.
For every word wdn in a document d which is indexed by n (from 1 to Nd , the number of words in document d), we 

have a latent topic zdn (also known as topic assignment) which indicates the topic the word represents. zdn and wdn are 
categorical variables generated from θd and φk respectively:

zdn | θd ∼ Discrete(θd) , (13)

wdn | zdn, φ ∼ Discrete(φzd ) , for n = 1, . . . , Nd . (14)

The above α and β are the discount and concentration parameters of the PYPs (see Section 2.1), note that they are called 
the hyperparameters in the model. We present a list of variables used in this section in Table 1.

3.2. Model representation and posterior likelihood

In a Bayesian setting, posterior inference requires us to analyse the posterior distribution of the model variables given 
the observed data. For instance, the joint posterior distribution for the HPYP topic model is

p(μ,ν,γ , θ,φ,Z |W,�) . (15)

Here, we use bold face capital letters to represent the set of all relevant variables. For instance, W captures all words in the 
corpus. Additionally, we denote � as the set of all hyperparameters and constants in the model.

Note that deriving the posterior distribution analytically is almost impossible due to its complex nature. This leaves 
us with approximate Bayesian inference techniques as mentioned in Section 2.3. However, even with these techniques, 
performing posterior inference with the posterior distribution is difficult due to the coupling of the probability vectors from 
the PYPs.

The key to an efficient inference procedure with the PYPs is to marginalise out the PYPs in the model and record various 
associated counts instead, which yields a collapsed sampler. To achieve this, we adopt a Chinese Restaurant Process (CRP) 
metaphor [80,6] to represent the variables in the topic model. With this metaphor, all data in the model (e.g., topics and 
words) are the customers; while the PYP nodes are the restaurants the customers visit. In each restaurant, each customer 
is to be seated at only one table, though each table can have any number of customers. Each table in a restaurant serves 
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Fig. 2. An illustration of the Chinese restaurant process representation. The customers are represented by the circles while the tables are represented 
by the rectangles. The dishes are the symbols in the middle of the rectangles, here they are denoted by the sunny symbol and the cloudy symbol. In 
this illustration, we know the number of customers corresponds to each table, for example, the green table is occupied by three customers. Also, since 
Restaurant 1 is the parent of Restaurant 2, the tables in Restaurant 2 are treated as the customers for Restaurant 1. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. An illustration of the Chinese restaurant with the table counts representation. Here the setting is the same as Fig. 2 but the seating arrangement of 
the customers are “forgotten” and only the table and customer counts are recorded. Thus, we only know that there are three sunny tables in Restaurant 2, 
with a total of nine customers. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

a dish, the dish corresponds to the categorical label a data point may have (e.g., the topic label or word). Note that there 
can be more than one table serving the same dish. In a HPYP topic model, the tables in a restaurant N are treated as the 
customers for the parent restaurant P (in the graphical model, P points to N ), and they share the same dish. This means 
that the data is passed up recursively until the root node. For illustration, we present a simple example in Fig. 2, showing 
the seating arrangement of the customers from two restaurants.

Naïvely recording the seating arrangement (table and dish) of each customer brings about computational inefficiency 
during inference. Instead, we adopt the table multiplicity (or table counts) representation of Chen et al. [15] which requires 
no dynamic memory, thus consuming only a factor of memory at no loss of inference efficiency. Under this representation, 
we store only the customer counts and table counts associated with each restaurant. The customer count cNk denotes the 
number of customers who are having dish k in restaurant N . The corresponding symbol without subscript, cN , denotes the 
collection of customer counts in restaurant N , that is, cN = (· · · , cNk , · · · ). The total number of customers in a restaurant 
N is denoted by the capitalised symbol instead, CN = ∑

k cNk . Similar to the customer count, the table count tNk denotes 
the number of non-empty tables serving dish k in restaurant N . The corresponding tN and TN are defined similarly. For 
instance, from the example in Fig. 2, we have c2

sun = 9 and t2
sun = 3, the corresponding illustration of the table multiplicity 

representation is presented in Fig. 3. We refer the readers to Chen et al. [15] for a detailed derivation of the posterior 
likelihood of a restaurant.
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For the posterior likelihood of the HPYP topic model, we marginalise out the probability vector associated with the PYPs 
and represent them with the customer counts and table counts, following Chen et al. [15, Theorem 1]. We present the 
modularised version of the full posterior of the HPYP topic model, which allows the posterior to be computed very quickly. 
The full posterior consists of the modularised likelihood associated with each PYP in the model, defined as

f (N ) =
(
βN ∣∣αN )

TN(
βN )

CN

K∏
k=1

S
cNk
tNk , αN

(
cNk
tNk

)−1

, for N ∼ PYP
(
αN , βN ,P

)
. (16)

Here, Sx
y, α are generalised Stirling numbers [12, Theorem 17]. Both (x)T and (x|y)T denote Pochhammer symbols with 

rising factorials [67, Section 18]:

(x)T = x · (x + 1) · · · (x + (T − 1)
)

, (17)

(x|y)T = x · (x + y) · · · (x + (T − 1)y
)
. (18)

With the CRP representation, the full posterior of the HPYP topic model can now be written — in terms of f (·) given in 
Equation (16) — as

p(Z,T,C |W,�) ∝ p(Z,W,T,C |�)

∝ f (μ) f (ν)

(
D∏

d=1

f (θd)

)(
K∏

k=1

f (φk)

)
f (γ )

( |V|∏
v=1

(
1

|V|
)t

γ
v

)
. (19)

This result is a generalisation of Chen et al. [15, Theorem 1] to account for discrete base distribution — the last term in 
Equation (19) corresponds to the base distribution of γ , and v indexes each unique word in vocabulary set V . The bold face 
T and C denote the collection of all table counts and customer counts, respectively. Note that the topic assignments Z are 
implicitly captured by the customer counts:

cθd
k =

Nd∑
n=1

I(zdn = k) , (20)

where I(·) is the indicator function, which evaluates to 1 when the statement inside the function is true, and 0 otherwise. 
We would like to point out that even though the probability vectors of the PYPs are integrated out and not explicitly stored, 
they can easily be reconstructed. This is discussed in Section 4.4. We move on to Bayesian inference in the next section.

4. Posterior inference for the HPYP topic model

We focus on the MCMC method for Bayesian inference on the HPYP topic model. The MCMC method on topic models 
follows these simple procedures — decrementing counts contributed by a word, sample a new topic for the word, and 
update the model by accepting or rejecting the proposed sample. Here, we describe the collapsed blocked Gibbs sampler 
for the HPYP topic model. Note the PYPs are marginalised out so we only deal with the counts.

4.1. Decrementing the counts associated with a word

The first step in a Gibbs sampler is to remove a word and corresponding latent topic, then decrement the associated 
customer counts and table counts. To give an example from Fig. 2, if we remove the red customer from Restaurant 2, 
we would decrement the customer count c2

sun by 1. Additionally, we also decrement the table count t2
sun by 1 because 

the red customer is the only customer on its table. This in turn decrements the customer count c1
sun by 1. However, this 

requires us to keep track of the customers’ seating arrangement which leads to increased memory requirements and poorer 
performance due to inadequate mixing [15].

To overcome the above issue, we follow the concept of table indicator [15] and introduce a new auxiliary Bernoulli 
indicator variable uN

k , which indicates whether removing the customer also removes the table by which the customer is 
seated. Note that our Bernoulli indicator is different to that of Chen et al. [15] which indicates the restaurant a customer 
contributes to. The Bernoulli indicator is sampled as needed in the decrementing procedure and it is not stored, this means 
that we simply “forget” the seating arrangements and re-sample them later when needed, thus we do not need to store 
the seating arrangement. The Bernoulli indicator of a restaurant N depends solely on the customer counts and the table 
counts:

p
(
uN

k

) =
{

tNk /cNk if uN
k = 1

1 − tNk /cNk if uN
k = 0 .

(21)

In the context of the HPYP topic model described in Section 3.1, we formally present how we decrement the counts 
associated with the word wdn and latent topic zdn from document d and position n. First, on the vocabulary side (see 
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Table 2
All possible proposals of the blocked Gibbs sampler for the variables associated with wdn . To illustrate, one sample would be zdn = 1, tNzdn

does not 
increment (stays the same), and cNzdn

increments by 1, for all N in {μ, ν, θd, φzdn , γ }. We note that the proposals can include states that are invalid, but 
this is not an issue since those states have zero posterior probability and thus will not be sampled.

Variable Possibilities Variable Possibilities Variable Possibilities

zdn {1, . . . , K } tNzdn
{tNzdn

, tNzdn
+ 1} cNzdn

{cNzdn
, cNzdn

+ 1}

Fig. 1), we decrement the customer count c
φzdn
wdn

associated with φzdn by 1. Then sample a Bernoulli indicator u
φzdn
wdn

according 

to Equation (21). If u
φzdn
wdn

= 1, we decrement the table count t
φzdn
wdn

and also the customer count cγ
wdn

by one. In this case, 
we would sample a Bernoulli indicator uγ

wdn
for γ , and decrement tγwdn

if uγ
wdn

= 1. We do not decrement the respective 
customer count if the Bernoulli indicator is 0. Second, we would need to decrement the counts associated with the latent 
topic zdn . The procedure is similar, we decrement cθd

zdn
by 1 and sample the Bernoulli indicator uθd

zdn
. Note that whenever we 

decrement a customer count, we sample the corresponding Bernoulli indicator. We repeat this procedure recursively until 
the Bernoulli indicator is 0 or until the procedure hits the root node.

4.2. Sampling a new topic for a word

After decrementing the variables associated with a word wdn , we use a blocked Gibbs sampler to sample a new topic zdn
for the word and the corresponding customer counts and table counts. The conditional posterior used in sampling can be 
computed quickly when the full posterior is represented in a modularised form. To illustrate, the conditional posterior for 
zdn and its associated customer counts and table counts is

p(zdn,T,C |Z−dn,W,T−dn,C−dn,�) = p(Z,T,C |W,�)

p(Z−dn,T−dn,C−dn |W,�)
, (22)

which is further broken down by substituting the posterior likelihood defined in Equation (19), giving the following ratios 
of the modularised likelihoods:

f (μ)

f (μ−dn)

f (ν)

f (ν−dn)

f (θd)

f (θ−dn
d )

f (φzdn)

f (φ−dn
zdn

)

f (γ )

f (γ −dn)

(
1

|V|
)t

γ
wdn

−(t
γ
wdn

)
−dn

. (23)

The superscript �−dn indicates that the variables associated with the word wdn are removed from the respective sets, that is, 
the customer counts and table counts are after the decrementing procedure. Since we are only sample the topic assignment 
zdn associated with one word, the customer counts and table counts can only increment by at most 1, see Table 2 for a list 
of all possible proposals.

This allows the ratios of the modularised likelihoods, which consists of ratios of Pochhammer symbol and ratio of Stirling 
numbers

f (N )

f (N−dn)
=

(βN )
(CN )

−dn

(βN )CN

(βN |αN )TN

(βN |αN )
(TN )

−dn

K∏
k=1

S
cNk
tNk , αN

S
(cNk )

−dn

(tNk )
−dn

, αN

, (24)

to simplify further. For instance, the ratios of Pochhammer symbols can be reduced to constants, as follows:

(x)T +1

(x)T
= x + T ,

(x|y)T +1

(x|y)T
= x + yT . (25)

The ratio of Stirling numbers, such as S y+1
x+1, α/S y

x, α , can be computed quickly via caching [12]. Technical details on imple-
menting the Stirling numbers cache can be found in Lim [46].

With the conditional posterior defined, we proceed to the sampling process. Our first step involves finding all possible 
changes to the topic zdn , customer counts, and the table counts (hereafter known as ‘state’) associated with adding the 
removed word wdn back into the topic model. Since only one word is added into the model, the customer counts and the 
table counts can only increase by at most 1, constraining the possible states to a reasonably small number. Furthermore, 
the customer counts of a parent node will only be incremented when the table counts of its child node increases. Note that 
it is possible for the added customer to generate a new dish (topic) for the model. This requires the customer to increment 
the table count of a new dish in the root node μ by 1 (from 0).

Next, we compute the conditional posterior (Equation (22)) for all possible states. The conditional posterior (up to a 
proportional constant) can be computed quickly by breaking down the posterior and calculating the relevant parts. We then 
normalise them to sample one of the states to be the proposed next state. Note that the proposed state will always be 
accepted, which is an artifact of Gibbs sampler.

Finally, given the proposal, we update the HPYP model by incrementing the relevant customer counts and table counts.
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4.3. Optimising the hyperparameters

Choosing the right hyperparameters for the priors is important for topic models. Wallach et al. [85] show that an opti-
mised hyperparameter increases the robustness of the topic models and improves their model fitting. The hyperparameters 
of the HPYP topic models are the discount parameters and concentration parameters of the PYPs. Here, we propose a pro-
cedure to optimise the concentration parameters, but leave the discount parameters fixed due to their coupling with the 
Stirling numbers cache.

The concentration parameters β of all the PYPs are optimised using an auxiliary variable sampler similar to Teh [79]. 
Being Bayesian, we assume the concentration parameter βN of a PYP node N has the following hyperprior:

βN ∼ Gamma(τ0, τ1) , for N ∼ PYP
(
αN , βN ,P

)
, (26)

where τ0 is the shape parameter and τ1 is the rate parameter. The gamma prior is chosen due to its conjugacy which gives 
a gamma posterior for βN .

To optimise βN , we first sample the auxiliary variables ω and ζi given the current value of αN and βN , as follows:

ω |βN ∼ Beta
(
CN , βN )

, (27)

ζi |αN , βN ∼ Bernoulli

(
βN

βN + iαN

)
, for i = 0,1, . . . , TN − 1 . (28)

With these, we can then sample a new βN from its conditional posterior

βN ∣∣ω,ζ ∼ Gamma

⎛
⎝τ0 +

TN −1∑
i=0

ζi , τ1 − log(1 − ω)

⎞
⎠ . (29)

The collapsed Gibbs sampler is summarised by Algorithm 1:

Algorithm 1 Collapsed Gibbs Sampler for the HPYP Topic Model.
1. Initialise the HPYP topic model by assigning random topic to the latent topic zdn associated to each word wdn . Then update all the 

relevant customer counts C and table counts T by using Equation (20) and setting the table counts to be about half of the customer 
counts.

2. For each word wdn in each document d, do the following:
(a) Decrement the counts associated with wdn (see Section 4.1).
(b) Block sample a new topic for zdn and corresponding customer counts C and table counts T (see Section 4.2).
(c) Update (increment counts) the topic model based on the sample.

3. Update the hyperparameter βN for each PYP nodes N (see Section 4.3).
4. Repeat Steps 2–3 until the model converges or when a fix number of iterations is reached.

4.4. Estimating the probability vectors of the PYPs

Recall that the aim of topic modelling is to analyse the posterior of the model parameters, such as one in Equation (15). 
Although we have marginalised out the PYPs in the above Gibbs sampler, the PYPs can be reconstructed from the associated 
customer counts and table counts. Recovering the full posterior distribution of the PYPs is a complicated task. So, instead, 
we will analyse the PYPs via the expected value of their conditional marginal posterior distribution, or simply, their posterior 
mean,

E[N |Z,W,T,C,�] , for N ∈ {μ,ν,γ , θd, φk} . (30)

The posterior mean of a PYP corresponds to the probability of sampling a new customer for the PYP. To illustrate, we 
consider the posterior of the topic distribution θd . We let z̃dn to be a unknown future latent topic in addition to the known Z. 
With this, we can write the posterior mean of θdk as

E[θdk |Z,W,T,C,�] = E[p(z̃dn = k | θd,Z,W,T,C,�) |Z,W,T,C,�]
= E[p(z̃dn = k |Z,T,C) |Z,W,T,C,�] , (31)

by replacing θdk with the posterior predictive distribution of z̃dn and note that z̃dn can be sampled using the CRP, as follows:

p(z̃dn = k |Z,T,C) = (αθd T θd + βθd )νk + cθd
k − αθd T θd

k

βθd + Cθd
. (32)
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Thus, the posterior mean of θd is given as

E[θdk |Z,W,T,C,�] = (αθd T θd + βθd )E[νk |Z,W,T,C,�] + cθd
k − αθd T θd

k

βθd + Cθd
, (33)

which is written in term of the posterior mean of its parent PYP, ν . The posterior means of the other PYPs such as ν can 
be derived by taking a similar approach. Generally, the posterior mean corresponds to a PYP N (with parent PYP P) is as 
follows:

E[Nk |Z,W,T,C,�] = (αN TN + βN )E[Pk |Z,W,T,C,�] + cNk − αN TN
k

βN + CN , (34)

By applying Equation (34) recursively, we obtain the posterior mean for all the PYPs in the model.
We note that the dimension of the topic distributions (μ, ν , θ ) is K + 1, where K is the number of observed topics. 

This accounts for the generation of a new topic associated with the new customer, though the probability of generating a 
new topic is usually much smaller. In practice, we may instead ignore the extra dimension during the evaluation of a topic 
model since it does not provide useful interpretation. One way to do this is to simply discard the extra dimension of all 
the probability vectors after computing the posterior mean. Another approach would be to normalise the posterior mean of 
the root node μ after discarding the extra dimension, before computing the posterior mean of others PYPs. Note that for a 
considerably large corpus, the difference in the above approaches would be too small to notice.

4.5. Evaluations on topic models

Generally, there are two ways to evaluate a topic model. The first is to evaluate the topic model based on the task it 
performs, for instance, the ability to make predictions. The second approach is the statistical evaluation of the topic model 
on modelling the data, which is also known as the goodness-of-fit test. In this section, we will present some commonly 
used evaluation metrics that are applicable to all topic models, but we first discuss the procedure for estimating variables 
associated with the test set.

4.5.1. Predictive inference on the test documents
Test documents, which are used for evaluations, are set aside from learning documents. As such, the document–topic 

distributions θ associated with the test documents are unknown and hence need to be estimated. One estimate for θ is its 
posterior mean given the variables learned from the Gibbs sampler:

θ̂d = E[θd |Z,W,T,C,�] , (35)

obtainable by applying Equation (34). Note that since the latent topics Z̃ corresponding to the test set are not sampled, the 
customer counts and table counts associated with θd are 0, thus θ̂d is equal to ν̂ , the posterior mean of ν . However, this is 
not a good estimate for the topic distribution of the test documents since they will be identical for all the test documents. 
To overcome this issue, we will instead use some of the words in the test documents to obtain a better estimate for θ . This 
method is known as document completion [86], as we use part of the text to estimate θ , and use the rest for evaluation.

Getting a better estimate for θ requires us to first sample some of the latent topics z̃dn in the test documents. The 
proper way to do this is by running an algorithm akin to the collapsed Gibbs sampler, but this would be excruciatingly slow 
due to the need to re-sample the customer counts and table counts for all the parent PYPs. Instead, we assume that the 
variables learned from the Gibbs sampler are fixed and sample the z̃dn from their conditional posterior sequentially, given 
the previous latent topics:

p(z̃dn = k | w̃dn, θd, φ, z̃d1, . . . , z̃d,n−1) ∝ θdk φkwdn . (36)

Whenever a latent topic z̃dn is sampled, we increment the customer count cθd
z̃dn

for the test document. For simplicity, we set 

the table count tθd
z̃dn

to be half the corresponding customer counts cθd
z̃dn

, this avoids the expensive operation of sampling the 
table counts. Additionally, θd is re-estimated using Equation (35) before sampling the next latent topic. We note that the 
estimated variables are unbiased.

The final θd becomes an estimate for the topic distribution of the test document d. The above procedure is repeated R
times to give R samples of θ(r)

d , which are used to compute the following Monte Carlo estimate of θd:

θ̂d = 1

R

R∑
r=1

θ
(r)
d . (37)

This Monte Carlo estimate can then be used for computing the evaluation metrics. Note that when estimating θ , we have 
ignored the possibility of generating a new topic, that is, the latent topics z̃ are constrained to the existing topics, as 
previously discussed in Section 4.4.
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4.5.2. Goodness-of-fit test
Measures of goodness-of-fit usually involves computing the discrepancy of the observed values and the predicted values 

under the model. However, the observed variables in a topic model are the words in the corpus, which are not quantifiable 
since they are discrete labels. Thus evaluations on topic models are usually based on the model likelihoods instead.

A popular metric commonly used to evaluate the goodness-of-fit of a topic model is perplexity, which is negatively 
related to the likelihood of the observed words W given the model, this is defined as

perplexity(W | θ,φ) = exp

(
−

∑D
d=1

∑Nd
n=1 log p(wdn | θd, φ)∑D

d=1 Nd

)
, (38)

where p(wdn | θd, φ) is the likelihood of sampling the word wdn given the document–topic distribution θd and the topic–
word distributions φ. Computing p(wdn | θd, φ) requires us to marginalise out zdn from their joint distribution, as follows:

p(wdn | θd, φ) =
∑

k

p(wdn, zdn = k | θd, φ)

=
∑

k

p(wdn | zdn = k, φk) p(zdn = k | θd)

=
∑

k

φkwdnθdk . (39)

Although perplexity can be computed on the whole corpus, in practice we compute the perplexity on test documents. 
This is to measure if the topic model generalises well to unseen data. A good topic model would be able to predict the 
words in the test set better, thereby assigning a higher probability p(wdn | θd, φ) in generating the words. Since perplexity 
is negatively related to the likelihood, a lower perplexity is better.

4.5.3. Document clustering
We can also evaluate the clustering ability of the topic models. Note that topic models assign a topic to each word 

in a document, essentially performing a soft clustering [21] for the documents in which the membership is given by the 
document–topic distribution θ . To evaluate the clustering of the documents, we convert the soft clustering to hard cluster-
ing by choosing a topic that best represents the documents, hereafter called the dominant topic. The dominant topic of a 
document d corresponds to the topic that has the highest proportion in the topic distribution, that is,

Dominant Topic(θd) = arg max
k

θdk . (40)

Two commonly used evaluation measures for clustering are purity and normalised mutual information (NMI) [58]. The 
purity is a simple clustering measure which can be interpreted as the proportion of documents correctly clustered, while 
NMI is an information theoretic measures used for clustering comparison. If we denote the ground truth classes as S =
{s1, . . . , s J } and the obtained clusters as R = {r1, . . . , rK }, where each s j and rk represents a collection (set) of documents, 
then the purity and NMI can be computed as

purity(S,R) = 1

D

K∑
k=1

max
j

|rk ∩ s j | , NMI(S,R) = 2 MI(S;R)

E(S) + E(R)
, (41)

where MI(S; R) denotes the mutual information between two sets and E(·) denotes the entropy. They are defined as 
follows:

MI(S;R) =
K∑

k=1

J∑
j=1

|rk ∩ s j |
D

log2 D
|rk ∩ s j|
|rk||s j | , E(R) = −

K∑
k=1

|rk|
D

log2
|rk|
D

. (42)

Note that the higher the purity or NMI, the better the clustering.

5. Application: modelling social network on twitter

This section looks at how we can employ the framework discussed above for an application of tweet modelling, using 
auxiliary information that is available on Twitter. We propose the Twitter-Network topic model (TNTM) to jointly model the 
text and the social network in a fully Bayesian nonparametric way, in particular, by incorporating the authors, hashtags, 
the “follower” network, and the text content in modelling. The TNTM employs a HPYP for text modelling and a Gaussian 
process (GP) random function model for social network modelling. We show that the TNTM significantly outperforms several 
existing nonparametric models due to its flexibility.



K.W. Lim et al. / International Journal of Approximate Reasoning 78 (2016) 172–191 183
Fig. 4. Graphical model for the Twitter-Network Topic Model (TNTM) composed of a HPYP topic model (region b©) and a GP based random function network 
model (region a©). The author–topic distributions ν serve to link the two together. Each tweet is modelled with a hierarchy of document–topic distributions 
denoted by η, θ ′ , and θ , where each is attuned to the whole tweet, the hashtags, and the words, in that order. With their own topic assignments z′ and z, 
the hashtags y and the words w are separately modelled. They are generated from the topic–hashtag distributions ψ ′ and the topic–word distributions ψ
respectively. The variables μ0, μ1 and γ are priors for the respective PYPs. The connections between the authors are denoted by x, modelled by random 
function F .

5.1. Motivation

Emergence of web services such as blogs, microblogs and social networking websites allows people to contribute infor-
mation freely and publicly. This user-generated information is generally more personal, informal, and often contains personal 
opinions. In aggregate, it can be useful for reputation analysis of entities and products [3], natural disaster detection [39], 
obtaining first-hand news [10], or even demographic analysis [16]. We focus on Twitter, an accessible source of information 
that allows users to freely voice their opinions and thoughts in short text known as tweets.

Although LDA [9] is a popular model for text modelling, a direct application on tweets often yields poor result as tweets 
are short and often noisy [92,4], that is, tweets are unstructured and often contain grammatical and spelling errors, as well 
as informal words such as user-defined abbreviations due to the 140 characters limit. LDA fails on short tweets since it is 
heavily dependent on word co-occurrence. Also notable is that the text in tweets may contain special tokens known as 
hashtags; they are used as keywords and allow users to link their tweets with other tweets tagged with the same hashtag. 
Nevertheless, hashtags are informal since they have no standards. Hashtags can be used as both inline words or categorical 
labels. When used as labels, hashtags are often noisy, since users can create new hashtags easily and use any existing 
hashtags in any way they like.2 Hence instead of being hard labels, hashtags are best treated as special words which can 
be the themes of the tweets. These properties of tweets make them challenging for topic models, and ad hoc alternatives 
are used instead. For instance, Maynard et al. [60] advocate the use of shallow method for tweets, and Mehrotra et al. [62]
utilise a tweet-pooling approach to group short tweets into a larger document. In other text analysis applications, tweets 
are often ‘cleansed’ by NLP methods such as lexical normalisation [4]. However, the use of normalisation is also criticised 
[20], as normalisation can change the meaning of text.

In the following, we propose a novel method for better modelling of microblogs by leveraging the auxiliary information 
that accompanies tweets. This information, complementing word co-occurrence, also opens the door to more applications, 
such as user recommendation and hashtag suggestion. Our major contributions include (1) a fully Bayesian nonparametric 
model named the Twitter-Network Topic Model (TNTM) that models tweets well, and (2) a combination of both the HPYP 
and the GP to jointly model text, hashtags, authors and the followers network. Despite the seeming complexity of the TNTM 
model, its implementation is made relatively straightforward using the flexible framework developed in Section 3. Indeed, 
a number of other variants were rapidly implemented with this framework as well.

5.2. The Twitter-Network Topic Model

The TNTM makes use of the accompanying hashtags, authors, and followers network to model tweets better. The TNTM 
is composed of two main components: a HPYP topic model for the text and hashtags, and a GP based random function 
network model for the followers network. The authorship information serves to connect the two together. The HPYP topic 
model is illustrated by region b© in Fig. 4 while the network model is captured by region a©.

2 For example, hashtag hijacking, where a well defined hashtag is used in an “inappropriate” way. The most notable example would be on the hashtag 
#McDStories, though it was initially created to promote happy stories on McDonald’s, the hashtag was hijacked with negative stories on McDonald’s.
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5.2.1. HPYP topic model
The HPYP topic model described in Section 3 is extended as follows. For the word distributions, we first generate a 

parent word distribution prior γ for all topics:

γ ∼ PYP(αγ ,βγ , Hγ ) , (43)

where Hγ is a discrete uniform distribution over the complete word vocabulary V .3 Then, we sample the hashtag distribu-
tion ψ ′

k and word distribution ψk for each topic k, with γ as the base distribution:

ψ ′
k |γ ∼ PYP(αψ ′

k , βψ ′
k , γ ) , (44)

ψk |γ ∼ PYP(αψk , βψk , γ ) , for k = 1, . . . , K . (45)

Note that the tokens of the hashtags are shared with the words, that is, the hashtag #happy shares the same token as the 
word happy, and are thus treated as the same word. This treatment is important since some hashtags are used as words 
instead of labels.4 Additionally, this also allows any words to be hashtags, which will be useful for hashtag recommendation.

For the topic distributions, we generate a global topic distribution μ0, which serves as a prior, from a GEM distribution. 
Then generate the author–topic distribution νi for each author i, and a miscellaneous topic distribution μ1 to capture topics 
that deviate from the authors’ usual topics:

μ0 ∼ GEM(αμ0 , βμ0) , (46)

μ1 |μ0 ∼ PYP(αμ1 , βμ1 ,μ0) , (47)

νi |μ0 ∼ PYP(ανi , βνi ,μ0) , for i = 1, . . . , A . (48)

For each tweet d, given the author–topic distribution ν and the observed author ad , we sample the document–topic distri-
bution ηd , as follows:

ηd |ad, ν ∼ PYP(αηd , βηd , νad ) , for d = 1, . . . , D . (49)

Next, we generate the topic distributions for the observed hashtags (θ ′
d) and the observed words (θd), following the tech-

nique used in the adaptive topic model [18]. We explicitly model the influence of hashtags to words, by generating the 
words conditioned on the hashtags. The intuition comes from hashtags being the themes of a tweet, and they drive the 
content of the tweet. Specifically, we sample the mixing proportions ρθ ′

d , which control the contribution of ηd and μ1 for 
the base distribution of θ ′

d , and then generate θ ′
d given ρθ ′

d :

ρθ ′
d ∼ Beta

(
λ

θ ′
d

0 , λ
θ ′

d
1

)
, (50)

θ ′
d |μ1, ηd ∼ PYP

(
αθ ′

d , βθ ′
d ,ρθ ′

dμ1 + (1 − ρθ ′
d )ηd

)
. (51)

We set θ ′
d and ηd as the parent distributions of θd . This flexible configuration allows us to investigate the relationship 

between θd , θ ′
d and ηd , that is, we can examine if θd is directly determined by ηd , or through the θ ′

d . The mixing proportions 
ρθd and the topic distribution θd is generated similarly:

ρθd ∼ Beta
(
λ

θd
0 , λ

θd
1

)
, (52)

θd |ηd, θ
′
d ∼ PYP

(
αθd , βθd , ρθdηm + (1 − ρθd )θ ′

d

)
. (53)

The hashtags and words are then generated in a similar fashion to LDA. For the m-th hashtag in tweet d, we sample a topic 
z′

dm and the hashtag ydm by

z′
dm | θ ′

d ∼ Discrete
(
θ ′

d

)
, (54)

ydm | z′
dm,ψ ′ ∼ Discrete

(
ψ ′

z′
dm

)
, for m = 1, . . . , Md , (55)

where Md is the number of seen hashtags in tweet d. While for the n-th word in tweet d, we sample a topic zdn and the 
word wdn by

zdn | θd ∼ Discrete(θd) , (56)

wdn | zdn,ψ ∼ Discrete
(
ψzdn

)
, for n = 1, . . . , Nd , (57)

3 The complete word vocabulary contains words and hashtags seen in the corpus.
4 For instance, as illustrated by the following tweet: i want to get into #photography. can someone recommend a good beginner #camera please? i dont know 

where to start.



K.W. Lim et al. / International Journal of Approximate Reasoning 78 (2016) 172–191 185
where Nd is the number of observed words in tweet d. We note that all above α, β and λ are the hyperparameters of the 
model. We show the importance of the above modelling with ablation studies in Section 5.6. Although the HPYP topic model 
may seem complex, it is a simple network of PYP nodes since all distributions on the probability vectors are modelled by 
the PYP.

5.2.2. Random function network model
The network modelling is connected to the HPYP topic model via the author–topic distributions ν , where we treat ν

as inputs to the GP in the network model. The GP, represented by F , determines the link between two authors (xij), 
which indicates the existence of the social links between author i and author j. For each pair of authors, we sample their 
connections with the following random function network model:

Q ij |ν ∼ F(νi, ν j) , (58)

xij | Q ij ∼ Bernoulli
(
s(Q ij)

)
, for i = 1, . . . , A; j = 1, . . . , A , (59)

where s(·) is the sigmoid function:

s(t) = 1

1 + e−t
. (60)

By marginalising out F , we can write Q ∼ GP(ς, κ), where Q is a vectorised collection of Q ij .5 ς denotes the mean vector 
and κ is the covariance matrix of the GP:

ςi j = Sim(νi, ν j) , (61)

κi j,i′ j′ = s2

2
exp

(
−

∣∣Sim(νi, ν j) − Sim(νi′ , ν j′)
∣∣2

2l2

)
+ σ 2 I(i j = i′ j′) , (62)

where s, l and σ are the hyperparameters associated to the kernel. Sim(·, ·) is a similarity function that has a range between 
0 and 1, here chosen to be cosine similarity due to its ease of computation and popularity.

5.2.3. Relationships with other models
The TNTM is related to many existing models after removing certain components of the model. When hashtags and 

the network components are removed, the TNTM is reduced to a nonparametric variant of the author topic model (ATM). 
Oppositely, if authorship information is discarded, the TNTM resembles the correspondence LDA [7], although it differs in that 
it allows hashtags and words to be generated from a common vocabulary.

In contrast to existing parametric models, the network model in the TNTM provides possibly the most flexible way of 
network modelling via a nonparametric Bayesian prior (GP), following Lloyd et al. [53]. Different to Lloyd et al. [53], we 
propose a new kernel function that fits our purpose better and achieves significant improvement over the original kernel.

5.3. Representation and model likelihood

As with previous sections, we represent the TNTM using the CRP representation discussed in Section 3.2. However, since 
the PYP variables in the TNTM can have multiple parents, we extend the representation following [18]. The distinction is 
that we store multiple tables counts for each PYP, to illustrate, tN→P

k represents the number of tables in PYP N serving 
dish k that are contributed to the customer counts in PYP P , cPk . Similarly, the total table counts that contribute to P is 
denoted as TN→P = ∑

k tN→P
k . Note the number of tables in PYP N is tNk = ∑

P tN→P
k , while the total number of tables 

is TN = ∑
P TN→P . We refer the readers to Lim et al. [48, Appendix B] for a detailed discussion.

We use bold face capital letters to denote the set of all relevant lower case variables, for example, we denote W◦ = {W, Y}
as the set of all words and hashtags; Z◦ = {Z, Z′} as the set of all topic assignments for the words and the hashtags; T as 
the set of all table counts and C as the set of all customer counts; and we introduce � as the set of all hyperparameters. 
By marginalising out the latent variables, we write down the model likelihood corresponding to the HPYP topic model in 
terms of the counts:

p(Z◦,T,C |W◦,�) ∝ p(Z◦,W◦,T,C |�)

∝ f (μ0) f (μ1)

(
A∏

i=1

f (νi)

)(
K∏

k=1

f (ψ ′
k) f (ψk)

)
f (γ )

×
(

D∏
d=1

f (ηd) f (θ ′
d) f (θd)g

(
ρθ ′

d
)

g
(
ρθ

d

)) |V|∏
v=1

(
1

|V|
)t

γ
v

, (63)

5 Q = (Q 11, Q 12, . . . , Q A A)T , note that ς and κ follow the same indexing.
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where f (N ) is the modularised likelihood corresponding to node N , as defined by Equation (16), and g(ρ) is the likelihood 
corresponding to the probability ρ that controls which parent node to send a customer to, defined as

g(ρN ) = B
(
λN0 + TN→P0 , λN1 + TN→P1

)
, (64)

for N ∼ PYP
(
αN , βN , ρNP0 + (1 −ρN )P1

)
. Note that B(a, b) denotes the Beta function that normalises a Dirichlet distri-

bution, defined as follows:

B(a,b) = �(a)�(b)

�(a + b)
. (65)

For the random function network model, the conditional posterior can be derived as

p(Q |X, ν,�) ∝ p(X,Q |ν,�)

∝
(

A∏
i=1

A∏
j=1

s(Q ij)
xi j

(
1 − s(Q ij)

)1−xi j

)

× |κ |− 1
2 exp

(
− 1

2
(Q − ς)T κ−1 (Q − ς)

)
. (66)

The full posterior likelihood is thus the product of the topic model posterior (Equation (63)) and the network posterior 
(Equation (66)):

p(Q,Z◦,T,C |X,W◦,�) = p(Z◦,T,C |W◦,�) p(Q |X, ν,�) . (67)

5.4. Performing posterior inference on the TNTM

In the TNTM, combining a GP with a HPYP makes its posterior inference non-trivial. Hence, we employ approximate 
inference by alternatively performing MCMC sampling on the HPYP topic model and the network model, conditioned on 
each other. For the HPYP topic model, we employ the flexible framework discussed in Section 3 to perform collapsed 
blocked Gibbs sampling. For the network model, we derive a Metropolis–Hastings (MH) algorithm based on the elliptical 
slice sampler [66]. In addition, the author–topic distributions ν connecting the HPYP and the GP are sampled with an 
MH scheme since their posteriors do not follow a standard form. We note that the PYPs in this section can have multiple 
parents, so we extend the framework in Section 3 to allow for this.

The collapsed Gibbs sampling for the HPYP topic model in TNTM is similar to the procedure in Section 4, although there 
are two main differences. The first difference is that we need to sample the topics for both words and hashtags, each with 
a different conditional posterior compared to that of Section 4. While the second is due to the PYPs in TNTM can have 
multiple parents, thus an alternative to decrementing the counts is required. A detailed discussion on performing posterior 
inference and hyperparameter sampling is presented in the supplementary material.6

5.5. Twitter data

For evaluation of the TNTM, we construct a tweet corpus from the Twitter 7 dataset [91].7 This corpus is queried using 
the hashtags #sport, #music, #finance, #politics, #science and #tech, chosen for diversity. We remove the non-English tweets 
with langid.py [55]. We obtain the data on the followers network from Kwak et al. [43].8 However, note that this followers 
network data is not complete and does not contain information for all authors. Thus we filter out the authors that are not 
part of the followers network data from the tweet corpus. Additionally, we also remove authors who have written less than 
fifty tweets from the corpus. We name this corpus T6 since it is queried with six hashtags. It is consists of 240,517 tweets 
with 150 authors after filtering.

Besides the T6 corpus, we also use the tweet datasets described in Mehrotra et al. [62]. The datasets contains three 
corpora, each of them is queried with exactly ten query terms. The first corpus, named the Generic Dataset, are queried 
with generic terms. The second is named the Specific Dataset, which is composed of tweets on specific named entities. 
Lastly, the Events Dataset is associated with certain events. The datasets are mainly used for comparing the performance 
of the TNTM against the tweet pooling techniques in Mehrotra et al. [62]. We present a summary of the tweet corpora in 
Table 3.

6 Available online.
7 http :/ /snap .stanford .edu /data /twitter7.html.
8 http :/ /an .kaist .ac .kr /traces /WWW2010 .html.

http://snap.stanford.edu/data/twitter7.html
http://an.kaist.ac.kr/traces/WWW2010.html
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Table 3
Summary of the datasets used in this section, showing the number of tweets (D), authors (A), unique word tokens (|V|), and the average number of words 
and hashtags in each tweet. The T6 dataset is queried with six different hashtags and thus has a higher number of hashtags per tweet. We note that there 
is a typo on the number of tweets for the Events Dataset in Mehrotra et al. [62], the correct number is 107 128.

Dataset Tweets Authors Vocabulary Words/tweet Hashtags/tweet

T6 240 517 150 5343 6.35 1.34
Generic 359 478 213 488 14 581 6.84 0.10
Specific 214 580 116 685 15 751 6.31 0.25
Events 107 128 67 388 12 765 5.84 0.17

Table 4
Test perplexity and network log likelihood comparisons between the HDP-LDA, the nonpara-
metric ATM, the random function network model and the TNTM. Lower perplexity indicates 
better model fitting. The TNTM significantly outperforms the other models in term of model 
fitting.

Model Test perplexity Network log likelihood

HDP-LDA 840.03 ± 15.7 N/A

Nonparametric ATM 664.25 ± 17.76 N/A

Random function N/A −557.86 ± 11.2

TNTM 505.01 ± 7.8 −500.63 ± 13.6

5.6. Experiments and results

We consider several tasks to evaluate the TNTM. The first task involves comparing the TNTM with existing baselines on 
performing topic modelling on tweets. We also compare the TNTM with the random function network model on modelling 
the followers network. Next, we evaluate the TNTM with ablation studies, in which we perform comparison with the TNTM 
itself but with each component taken away. Additionally, we evaluate the clustering performance of the TNTM, we compare 
the TNTM against the state-of-the-art tweets-pooling LDA method of Mehrotra et al. [62].

5.6.1. Experiment settings
In all the following experiments, we vary the discount parameters α for the topic distributions μ0, μ1, νi , ηm , θ ′

m , 
and θm , we set α to 0.7 for the word distributions ψ , φ′ and γ to induce power-law behaviour [27]. We initialise the 
concentration parameters β to 0.5, noting that they are learned automatically during inference, we set their hyperprior to 
Gamma(0.1, 0.1) for a vague prior. We fix the hyperparameters λ, s, l and σ to 1, as we find that their values have no 
significant impact on the model performance.9

In the following evaluations, we run the full inference algorithm for 2000 iterations for the models to converge. We note 
that the MH algorithm only starts after 1000 iterations. We repeat each experiment five times to reduce the estimation 
error for the evaluations.

5.6.2. Goodness-of-fit test
We compare the TNTM with the HDP-LDA and a nonparametric author–topic model (ATM) on fitting the text data (words 

and hashtags). Their performances are measured using perplexity on the test set (see Section 4.5.2). The perplexity for the 
TNTM, accounting for both words and hashtags, is

Perplexity(W◦) = exp

(
− log p

(
W◦ |ν,μ1,ψ,ψ ′)∑D

d=1 Nd + Md

)
, (68)

where the likelihood p
(
W◦ | ν, μ1, ψ, ψ ′) is broken into

p
(
W◦ |ν,μ1,ψ,ψ ′) =

D∏
d=1

Md∏
m=1

p(ydm |ν,μ1,ψ
′)

Nd∏
n=1

p(wdn | yd, ν,μ1,ψ) . (69)

We also compare the TNTM against the original random function network model in terms of the log likelihood of the 
network data, given by log p(X | ν). We present the comparison of the perplexity and the network log likelihood in Table 4. 
We note that for the network log likelihood, the less negative the better. From the result, we can see that the TNTM 
achieves a much lower perplexity compared to the HDP-LDA and the nonparametric ATM. Also, the nonparametric ATM is 
significantly better than the HDP-LDA. This clearly shows that using more auxiliary information gives a better model fitting. 
Additionally, we can also see that jointly modelling the text and network data leads to a better modelling on the followers 
network.

9 We vary these hyperparameters over the range from 0.01 to 10 during testing.
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Table 5
Ablation test on the TNTM. The test perplexity and the network log likelihood is evaluated on 
the TNTM against several ablated variants of the TNTM. The result shows that each component 
in the TNTM is important.

TNTM model Test perplexity Network LogLikelihood

No author 669.12 ± 9.3 N/A

No hashtag 1017.23 ± 27.5 −522.83 ± 17.7

No μ1 node 607.70 ± 10.7 −508.59 ± 9.8

No θ ′–θ connection 551.78 ± 16.0 −509.21 ± 18.7

No power-law 508.64 ± 7.1 −560.28 ± 30.7

Full model 505.01 ± 7.8 −500.63 ± 13.6

Table 6
Clustering evaluations of the TNTM against the LDA with different pooling schemes. Note that higher purity and NMI indicate better performance. The 
results for the different pooling methods are obtained from Table 4 in Mehrotra et al. [62]. The TNTM achieves better performance on the purity and the 
NMI for all datasets except for the Specific dataset, where it obtains the same purity score as the best pooling method.

Method/model Purity NMI

Data Generic Specific Events Generic Specific Events

No pooling 0.49 0.64 0.69 0.28 0.22 0.39
Author 0.54 0.62 0.60 0.24 0.17 0.41
Hourly 0.45 0.61 0.61 0.07 0.09 0.32
Burstwise 0.42 0.60 0.64 0.18 0.16 0.33
Hashtag 0.54 0.68 0.71 0.28 0.23 0.42

TNTM 0.66 0.68 0.79 0.43 0.31 0.52

5.6.3. Ablation test
Next, we perform an extensive ablation study with the TNTM. The components that are tested in this study are (1) 

authorship, (2) hashtags, (3) PYP μ1, (4) connection between PYP θ ′
d and θd , and (5) power-law behaviour on the PYPs. 

We compare the full TNTM against variations in which each component is ablated. Table 5 presents the test set perplexity 
and the network log likelihood of these models, it shows significant improvements of the TNTM over the ablated models. 
From this, we see that the greatest improvement on perplexity is from modelling the hashtags, which suggests that the 
hashtag information is the most important for modelling tweets. Second to the hashtags, the authorship information is very 
important as well. Even though modelling the power-law behaviour is not that important for perplexity, we see that the 
improvement on the network log likelihood is best achieved by modelling the power-law. This is because the flexibility 
enables us to learn the author–topic distributions better, and thus allowing the TNTM to fit the network data better. This 
also suggests that the authors in the corpus tend to focus on a specific topic rather than having a wide interest.

5.6.4. Document clustering and topic coherence
Mehrotra et al. [62] shows that running LDA on pooled tweets rather than unpooled tweets gives significant improvement 

on clustering. In particular, they find that grouping tweets based on the hashtags provides most improvement. Here, we 
show that instead of resorting to such an ad hoc method, the TNTM can achieve a significantly better result on clustering. The 
clustering evaluations are measured with purity and normalised mutual information (NMI [58]) described in Section 4.5.3. 
Since ground truth labels are unknown, we use the respective query terms as the ground truth for evaluations. Note that 
tweets that satisfy multiple labels are removed. Given the learned model, we assign a tweet to a cluster based on its 
dominant topic.

We perform the evaluations on the Generic, Specific and Events datasets for comparison purpose. We note the lack of 
network information in these datasets, and thus we employ only the HPYP part of the TNTM. Additionally, since the purity 
can trivially be improved by increasing the number of clusters, we limit the maximum number of topics to twenty for a fair 
comparison. We present the results in Table 6. We can see that the TNTM outperforms the pooling method in all aspects 
except on the Specific dataset, where it achieves the same purity as the best pooling scheme.

5.6.5. Automatic topic labelling
Traditionally, researchers assign a topic for each topic–word distribution manually by inspection. More recently, there 

have been attempts to label topics automatically in topic modelling. For instance, Lau et al. [45] use Wikipedia to extract 
labels for topics, and Mehdad et al. [61] use the entailment relations to select relevant phrases for topics. Here, we show 
that we can use hashtags to obtain good topic labels. In Table 7, we display the top words from the topic–word distribution 
ψk for each topic k. Instead of manually assigning the topic labels, we display the top three hashtags from the topic–hashtag 
distribution ψ ′

k . As we can see from Table 7, the hashtags appear suitable as topic labels. In fact, by empirically evaluating 
the suitability of the hashtags in representing the topics, we consistently find that, over 90% of the hashtags are good 
candidates for the topic labels. Moreover, inspecting the topics show that the major hashtags coincide with the query terms 
used in constructing the T6 dataset, which is to be expected. This verifies that the TNTM is working properly.
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Table 7
Topical analysis on the T6 dataset with the TNTM, which displays the top three hashtags and the top n words on six topics. Instead of manually assigning 
a topic label to the topics, we find that the top hashtags can serve as the topic labels.

Topic Top hashtags Top words

Topic 1 finance, money, economy finance, money, bank, marketwatch, stocks, china, group, shares, sales
Topic 2 politics, iranelection, tcot politics, iran, iranelection, tcot, tlot, topprog, obama, musiceanewsfeed
Topic 3 music, folk, pop music, folk, monster, head, pop, free, indie, album, gratuit, dernier
Topic 4 sports, women, asheville sports, women, football, win, game, top, world, asheville, vols, team
Topic 5 tech, news, jobs tech, news, jquery, jobs, hiring, gizmos, google, reuters
Topic 6 science, news, biology science, news, source, study, scientists, cancer, researchers, brain, biology, health

6. Conclusion

In this article, we proposed a topic modelling framework utilising PYPs, for which their realisation is a probability 
distribution or another stochastic process of the same type. In particular, for the purpose of performing inference, we 
described the CRP representation for the PYPs. This allows us to propose a single framework, discussed in Section 3, to 
implement these topic models, where we modularise the PYPs (and other variables) into blocks that can be combined to 
form different models. Doing so enables significant time to be saved on implementation of the topic models.

We presented a general HPYP topic model, that can be seen as a generalisation to the HDP-LDA [80]. The HPYP topic 
model is represented using a Chinese Restaurant Process (CRP) metaphor [80,6,15], and we discussed how the posterior 
likelihood of the HPYP topic model can be modularised. We then detailed the learning algorithm for the topic model in the 
modularised form.

We applied our HPYP topic model framework on Twitter data and proposed the Twitter-Network Topic model (TNTM). 
The TNTM models the authors, text, hashtags, and the authors-follower network in an integrated manner. In addition to 
HPYP, the TNTM employs the Gaussian process (GP) for the network modelling. The main suggested use of the TNTM is 
for content discovery on social networks. Through experiments, we show that jointly modelling of the text content and 
the network leads to better model fitting as compared to modelling them separately. Results on the qualitative analysis 
show that the learned topics and the authors’ topics are sound. Our experiments suggest that incorporating more auxiliary 
information leads to better fitting models.

6.1. Future research

For future work on TNTM, it would be interesting to apply TNTM to other types of data, such as blogs and news feeds. 
We could also use TNTM for other applications. such as hashtag recommendation and content suggestion for new Twitter 
users. Moreover, we could extend TNTM to incorporate more auxiliary information: for instance, we can model the location 
of tweets and the embedded multimedia contents such as URL, images and videos. Another interesting source of information 
would be the path of retweeted content.

Another interesting area of research is the combination of different kinds of topic models for a better analysis. This 
allows us to transfer learned knowledge from one topic model to another. The work on combining LDA has already been 
looked at by Schnober and Gurevych [77], however, combining other kinds of topic models, such as nonparametric ones, is 
unexplored.
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