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Abstract

This supplementary material looks at performing Bayesian inference on
the Twitter-Network Topic Model (TNTM) presented in the main article.
In the TNTM, combining a GP with a HPYP makes its posterior inference
non-trivial. Hence, we employ approximate inference by alternatively per-
forming MCMC sampling on the HPYP topic model and the network model,
conditioned on each other. For the HPYP topic model, we employ the flex-
ible framework discussed in Section 3 to perform collapsed blocked Gibbs
sampling. For the network model, we derive a Metropolis-Hastings (MH)
algorithm based on the elliptical slice sampler (Murray et al., 2010). In addi-
tion, the author–topic distributions ν connecting the HPYP and the GP are
sampled with an MH scheme since their posteriors do not follow a standard
form. We note that the PYPs here can have multiple parents, so we extend
the framework in Section 3 to allow for this.

Appendix A. Posterior Inference for TNTM

Appendix A.1. Decrementing the Counts Associated with a Word or Hashtag

When we remove a word or a hashtag during inference, we decrement
by one the customer count from the PYP associated with the word or the

hashtag, that is, cθdk for word wdn (zdn = k) and c
θ′d
k for hashtag ydm (z′dm = k).

Decrementing the customer count may or may not decrement the respective
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table count. However, if the table count is decremented, then we would
decrement the customer count of the parent PYP. This is relatively straight
forward in Section 4.1 since the PYPs have only one parent. Here, when a
PYP N has multiple parents, we would sample for one of its parent PYPs
and decrement the table count corresponding to the parent PYP. Although
not the same, the rationale of this procedure follows Section 4.1.

We explain in more details below. When the customer count cNk is decre-
mented, we introduce an auxiliary variable uNk that indicates which parent
of N to remove a table from, or none at all. The sample space for uNk is
the P parent nodes P1 , . . . ,PP of N , plus ∅. When uNk is equal to Pi , we
decrement the table count tN→Pik and subsequently decrement the customer
count cPik in node Pi . If uNk equals to ∅, we do not decrement any table
count. The process is repeated recursively as long as a customer count is
decremented, that is, we stop when uNk = ∅.

The value of uNk is sampled as follows:

p
(
uNk
)

=

{
tN→Pik /cNk if uNk = Pi
1−

∑
Pi p
(
uNk = Pi

)
if uNk = ∅ .

(A.1)

To illustrate, when a word wdn (with topic zdn) is removed, we decrement
cθdzdn , that is, cθdzdn becomes cθdzdn−1. We then determine if this word contributes
to any table in node θd by sampling uθdzdn from Equation (A.1). If uθdzdn = ∅, we
do not decrement any table count and proceed with the next step in Gibbs
sampling; otherwise, uθdzdn can either be θ′d or ηd , in these cases, we would

decrement t
θd→u

θd
zdn

zdn and c
u
θd
zdn
zdn , and continue the process recursively.

We present the decrementing process in Algorithm A. To remove a word
wdn during inference, we would need to decrement the counts contributed by
wdn (and zdn). For the topic side, we decrement the counts associated with
nodeN = θd with group k = zdn using Algorithm A. While for the vocabulary
side, we decrement the counts associated with the node N = ψzdn with group
k = wdn . The effect of the word on the other PYP variables are implicitly
considered through recursion.

Note that the procedure to decrementing a hashtag ydm is similar, in this
case, we decrement the counts for N = θ′d with k = z′dm (topic side), then
decrement the counts for N = ψ′z′dm

with k = ydm (vocabulary side).

Appendix A.2. Sampling a New Topic for a Word or a Hashtag

After decrementing, we sample a new topic for the word or the hashtag.
The sampling process follows the procedure discussed in Section 4.2, but
with different conditional posteriors (for both the word and the hashtag).
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Algorithm A Decrementing counts associated with a PYP N and group k.

1. Decrement the customer count cNk by one.

2. Sample an auxiliary variable uNk with Equation (A.1).

3. For the sampled uNk , perform the following:

(a) If uNk = ∅, exit the algorithm.

(b) Otherwise, decrement the table count t
N→uNk
k by one and repeat Steps

2 – 4 by replacing N with uNk .

The full conditional posterior probability for the collapsed blocked Gibbs
sampling can be derived easily. For instance, the conditional posterior for
sampling the topic zdn of word wdn is

p(zdn,T,C |Z◦−dn,W◦,T−dn,C−dn,Ξ) =
p(Z◦,T,C |W◦,Ξ)

p(Z◦−dn,T−dn,C−dn |W◦,Ξ)
(A.2)

which can then be easily decomposed into simpler form (see discussion in
Section 4.2) using Equation (63). Here, the superscript �−dn indicates the
word wdn and the topic zdn are removed from the respective sets. Similarly,
the conditional posterior probability for sampling the topic z′dm of hashtag
ydm can be derived as

p(z′dm,T,C |Z◦
−dm,W◦,T−dm,C−dm,Ξ) =

p(Z◦,T,C |W◦,Ξ)

p(Z◦−dm,T−dm,C−dm |W◦,Ξ)
(A.3)

where the superscript �−dm signals the removal of the hashtag ydm and the
topic z′dm . As in Section 4.2, we compute the posterior for all possible changes
to T and C corresponding to the new topic (for zdn or z′dm). We then sample
the next state using a Gibbs sampler.

Appendix A.3. Estimating the Probability Vectors of the PYPs with Multiple
Parents

Following Section 4.4, we estimate the various probability distributions
of the PYPs by their posterior means. For a PYP N with a single PYP
parent P1 , as discussed in Section 4.4, we can estimate its probability vector
N̂ = (N̂1, . . . , N̂K) as

N̂k = E[Nk |Z◦,W◦,T,C,Ξ]

=

(
αNTN + βN

)
E[P1k |Z◦,W◦,T,C,Ξ] + cNk − αNTNk

βN + CN
, (A.4)
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which lets one analyse the probability vectors in a topic model using recur-
sion.

Unlike the above, the posterior mean is slightly more complicated for a
PYP N that has multiple PYP parents P1, . . . ,PP . Formally, we define the
PYP N as

N |P1, . . . ,PP ∼ PYP
(
αN , βN , ρN1 P1 + · · ·+ ρNP PP

)
, (A.5)

where the mixing proportion ρN = (ρN1 , . . . , ρ
N
P ) follows a Dirichlet distribu-

tion with parameter λN = (λN1 , . . . , λ
N
P ):

ρN ∼ Dirichlet
(
λN
)
. (A.6)

Before we can estimate the probability vector, we first estimate the mix-
ing proportion with its posterior mean given the customer counts and table
counts:

ρ̂Ni = E[ρNi |Z◦,W◦,T,C,Ξ] =
TN→Pi + λNi
TN +

∑
i λ
N
i

. (A.7)

Then, we can estimate the probability vector N̂ = (N̂1, . . . , N̂K) by

N̂k =

(
αNTN + βN

)
ĤNk + cNk − αNTNk

βN + CN
, (A.8)

where ĤN = (ĤN1 , . . . , Ĥ
N
K ) is the expected base distribution:

ĤNk =
P∑
i=1

ρ̂Ni E[Pik |Z◦,W◦,T,C,Ξ] . (A.9)

With these formulations, all the topic distributions and the word distri-
butions in the TNTM can be reconstructed from the customer counts and
table counts. For instance, the author–topic distribution νi of each author i
can be determined recursively by first estimating the topic distribution µ0 .
The word distributions for each topic are similarly estimated.

Appendix A.4. MH Algorithm for the Random Function Network Model

Here, we discuss how we learn the topic distributions µ0 and ν from the
random function network model. We configure the MH algorithm to start
after running one thousand iterations of the collapsed blocked Gibbs sampler,
this is to we can quickly initialise the TNTM with the HPYP topic model
before running the full algorithm. In addition, this allows us to demonstrate
the improvement to the TNTM due to the random function network model.
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To facilitate the MH algorithm, we have to represent the topic distribu-
tions µ0 and ν explicitly as probability vectors, that is, we do not store the
customer counts and table counts for µ0 and ν after starting the MH algo-
rithm. In the MH algorithm, we propose new samples for µ0 and ν, and then
accept or reject the samples. The details for the MH algorithm is as follow.

In each iteration of the MH algorithm, we use the Dirichlet distributions
as proposal distributions for µ0 and ν:

q(µnew
0 |µ0) = Dirichlet(βµ0µ0) , (A.10)

q(νnewi | νi) = Dirichlet(βνiνi) . (A.11)

These proposed µ0 and ν are sampled given the their previous values, and
we note that the first µ0 and ν are computed using the technique discussed
in Appendix A.3. These proposed samples are subsequently used to sample
Qnew. We first compute the quantities ςnew and κnew using the proposed µnew

0

and νnew with Equation (61) and Equation (62). Then we sample Qnew given
ςnew and κnew using the elliptical slice sampler (see Murray et al., 2010):

Qnew ∼ GP(ςnew, κnew) . (A.12)

Finally, we compute the acceptance probability A′ = min(A, 1), where

A =
p(Qnew |X, νnew,Ξ)

p(Qold |X, νold,Ξ)

f ∗(µnew
0 | νnew,T)

∏A
i=1 f

∗(νnewi |T)

f ∗(µold
0 | νold,T)

∏A
i=1 f

∗(νoldi |T)

× q(µold
0 |µnew

0 )
∏A

i=1 q(ν
old
i | νnewi )

q(µnew
0 |µold

0 )
∏A

i=1 q(ν
new
i | νoldi )

, (A.13)

and we define f ∗(µ0 | ν,T) and f ∗(ν |T) as

f ∗(µ0 | ν,T) =
K∏
k=1

(µ0k)
t
µ1
k +

∑A
i=1 νi , (A.14)

f ∗(νi |T) =
K∏
k=1

(νik)
∑D
d=1 t

ηd
k I(ad=i) . (A.15)

The f ∗(·) corresponds to the topic model posterior of the variables µ0 and ν
after we represent them as probability vectors explicitly. Note that we treat
the acceptance probability A as 1 when the expression in Equation (A.13)
evaluates to more than 1. We then accept the proposed samples with prob-
ability A, if the sample are not accepted, we keep the respective old values.
This completes one iteration of the MH scheme. We summarise the MH
algorithm in Algorithm B.
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Algorithm B Performing the MH algorithm for one iteration.

1. Propose a new µnew0 with Equation (A.10).

2. For each author i, propose a new νnewi with Equation (A.11).

3. Compute the mean function ςnew and the covariance matrix κnew with Equa-
tion (61) and Equation (62).

4. Sample Qnew from Equation (A.12) using the elliptical slice sampler from
Murray et al. (2010).

5. Accept or reject the samples with acceptance probability from Equa-
tion (A.13).

Appendix A.5. Hyperparameter Sampling

We sample the hyperparameters β using an auxiliary variable sampler
while leaving α fixed. We note that the auxiliary variable sampler for PYPs
that have multiple parents are identical to that of PYPs with single parent,
since the sampler only used the total customer counts CN and the total table
counts TN for a PYP N . We refer the readers to Section 4.3 for details.

We would like to point out that hyperparameter sampling is performed
for all PYPs in TNTM for the first one thousand iterations. After that, as
µ0 and ν are represented as probability vectors explicitly, we only sample
the hyperparameters for the other PYPs (except µ0 and ν). We note that
sampling the concentration parameters allows the topic distributions of each
author to vary, that is, some authors have few very specific topics and some
other authors can have a wider range of topics. For simplicity, we fix the
kernel hyperparameters s, l and σ to 1. Additionally, we also make the
priors for the mixing proportions uninformative by setting the λ to 1. We
summarise the full inference algorithm for the TNTM in Algorithm C.
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Algorithm C Full inference algorithm for the TNTM.

1. Initialise the HPYP topic model by assigning random topic to the latent
topic zdn associated with each word wdn , and to the latent topic z′dm associ-
ated with each hashtag ydm . Then update all the relevant customer counts
C and table counts T.

2. For each word wdn in each document d, perform the following:

(a) Decrement the counts associated with wdn (see Appendix A.1).
(b) Blocked sample a new topic for zdn and corresponding customer counts

C and table counts T (with Equation (A.2)).
(c) Update (increment counts) the topic model based on the sample.

3. For each hashtag ydm in each document d, perform the following:

(a) Decrement the counts associated with ydm (see Appendix A.1).
(b) Blocked sample a new topic for z′dn and corresponding customer counts

C and table counts T (with Equation (A.3)).
(c) Update (increment counts) the topic model based on the sample.

4. Sample the hyperparameter βN for each PYP N (see Appendix A.5).

5. Repeat Steps 2 – 4 for 1,000 iterations.

6. Alternatingly perform the MH algorithm (Algorithm B) and the collapsed
blocked Gibbs sampler conditioned on µ0 and ν.

7. Sample the hyperparameter βN for each PYP N except for µ0 and ν.

8. Repeat Steps 6 – 7 until the model converges or when a fix number of itera-
tions is reached.
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