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Abstract
Policy optimization is a core component of rein-
forcement learning (RL), and most existing RL
methods directly optimize parameters of a policy
based on maximizing the expected total reward,
or its surrogate. Though often achieving encour-
aging empirical success, its underlying mathemat-
ical principle on policy-distribution optimization
is unclear. We place policy optimization into the
space of probability measures, and interpret it as
Wasserstein gradient flows. On the probability-
measure space, under specified circumstances,
policy optimization becomes a convex problem in
terms of distribution optimization. To make opti-
mization feasible, we develop efficient algorithms
by numerically solving the corresponding discrete
gradient flows. Our technique is applicable to sev-
eral RL settings, and is related to many state-of-
the-art policy-optimization algorithms. Empirical
results verify the effectiveness of our framework,
often obtaining better performance compared to
related algorithms.

1. Introduction
There is recent renewed interest in reinforcement learning
(Sutton & Barto, 1998; Kaelbling et al., 1996), largely as a
consequence of the success of deep reinforcement learning
(deep RL) (Mnih et al., 2015; Li, 2017), which is applicable
to complex environments and has obtained state-of-the-art
performance on several challenging problems. In reinforce-
ment learning an agent interacts with the environment, seek-
ing to learn an optimal policy that yields the maximum
expected reward during the interaction. Generally speak-
ing, a policy defines a distribution over actions conditioned
on the states. Learning an optimal policy corresponds to
searching for an element (a conditional action distribution)
on the space of distributions that yields the best expected
feedback (reward) to the agent as it interacts sequentially
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with the environment.

A standard technique for policy learning is the policy-
gradient (PG) method (Sutton et al., 2000). In PG, a policy
is represented in terms of parameters, typically optimized
by stochastic gradient descent (SGD) to maximize the ex-
pected total reward. A similar idea has been applied for
learning deterministic policies, termed deterministic policy
gradient (DPG) (Silver et al., 2014). Significant progress
has been made on advancing policy learning since introduc-
tion of deep learning techniques. As examples, the deep
deterministic policy gradient (DDPG) method combines
DPG and Q-learning (Watkins & Dayan, 1992) to jointly
learn a policy and a Q-function for continuous control prob-
lems (Lillicrap et al., 2016). Trust region policy optimiza-
tion (TRPO) improves PG by preserving the monotonic-
policy-improvement property (Schulman et al., 2015), im-
plemented by imposing a trust-region constraint, defined as
the Kullback-Leibler (KL) divergence between consecutive
policies. Later, (Schulman et al., 2017b) proposed proximal
policy optimization (PPO) to improve TRPO by optimiz-
ing a “surrogate” objective with an adaptive KL penalty and
reward-clipping mechanism. Though obtaining encouraging
empirical success, many of the aforementioned algorithms
optimize parameters directly, and appear to lack a rigorous
interpretation in terms of distribution optimization, e.g., it is
not mathematically clear how sequentially optimizing pol-
icy parameters based on an expected-total-reward objective
corresponds to optimizing the distribution of policy itself.

In this paper we introduce gradient flows in the space of
probability distributions, called Wasserstein gradient flows
(WGF), and formulate policy optimization in RL as a WGF
problem. Essentially, WGF induces a geometry structure
(manifold) in the distribution space characterized by an
energy functional. The length between elements on the man-
ifold is defined by the second-order Wasserstein distance.
Thus, searching for an optimal distribution corresponds to
traveling along a gradient flow on the space until conver-
gence. In the context of deep RL, the energy functional is
characterized by the expected reward. Gradient flow cor-
responds to a sequence of policy distributions converging
to an optimal policy during an iterative optimization proce-
dure. From this perspective, convergence behavior of the
optimization can be better understood.
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Traditional stochastic policies are limited by their simple
representation ability, such as using multinomial (Mnih
et al., 2015) or Gaussian policy distributions (Schulman
et al., 2015). To overcome this issue, the proposed WGF-
based stochastic policies employ general energy-based rep-
resentations. To optimize the stochastic policy, we define
WGFs for RL in two settings: i) indirect-policy learning,
defined on a distribution space for parameters; ii) direct-
policy learning, defined on a distribution space for policy
distributions. These correspond to two variants of our al-
gorithms. The original form of the WGF problem is hard
to deal with, as it is generally infeasible to directly opti-
mize over a distribution (an infinite-dimensional object). To
overcome this issue, based on the Jordan-Kinderlehrer-Otto
(JKO) method (Jordan et al., 1998), we propose a particle-
based algorithm to approximate a continuous density func-
tion with particles, and derive the corresponding gradient
formulas for particle updates. Our method is conceptually
simple and practically efficient, which also provides a theo-
retically sound way to use trust-region algorithms for RL.
Empirical experiments show improved performance over
related reinforcement learning algorithms.

2. Preliminaries
We review concepts and numerical algorithms for gradient
flows. We start from gradient flows on the Euclidean space,
and then extend them on the space of probability measures.

2.1. Gradient flows on the Euclidean space

For a smooth function∗ F : Rd → R, and a starting point
x0 ∈ Rd, the gradient flow of F (x) is defined as the solution
of the differential equation: dx

dτ = −∇F (x(τ)), for time
τ > 0 and initial condition x(0) = x0. This is a standard
Cauchy problem (Rulla, 1996), endowed with a unique
solution if ∇F is Lipschitz continuous. When F is non-
differentiable, the gradient is replaced with its subgradient,
which gives a similar definition, omitted for simplicity.

Numerical solution An exact solution to the above
gradient-flow problem is typically intractable. A stan-
dard numerical method, called the Minimizing Movement
Scheme (MMS) (Gobbino, 1999), evolves x iteratively
for small steps along the gradient of F at the current
point. Denoting the current point as xk, the next point
is xk+1 = xk −∇F (xk+1)h, with stepsize h. Note xk+1

is equivalent to solving optimization problem xk+1 =

arg minx F (x)+
‖x−xk ‖22

2h , where ‖ ·‖2 denotes the vector
2-norm. Convergence of the {xk} sequence to the exact so-
lution has been established (Ambrosio et al., 2005). Refer to
Section A.1 of the Supplementary Material (SM) for details.
∗We will focus on the convex case, since this is the case for

many gradient flows on the space of probability measures, as
detailed subsequently.

2.2. Gradient flows on the probability-measure space

By placing the optimization onto the space of probabil-
ity measures, denoted P(Ω) with Ω ⊂ Rd, we arrive at
Wasserstein gradient flows. For a formal definition, we first
endow a Riemannian geometry on P(Ω). The geometry is
characterized by the length between two elements (two dis-
tributions), defined by the 2nd-order Wasserstein distance:

W 2
2 (µ, ν) , inf

γ

{∫
Ω×Ω

‖x−y ‖22dγ(x,y) : γ ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) is the set of joint distributions over (x,y)
such that the two marginals equal µ and ν, respectively.
This is an optimal-transport problem, where one wants to
transform µ to ν with minimum cost (Villani, 2008). Thus
the term ‖x−y ‖22 represents the cost to transport x in µ
to y in ν, and can be replaced by a general metric c(x,y)
in a metric space. If µ is absolutely continuous w.r.t. the
Lebesgue measure, there is a unique optimal transport plan
from µ to ν, i.e., a mapping T : Rd → Rd pushing µ onto
ν satisfying T#µ = ν. Here T#µ denotes the pushforward
measure of µ. The Wasserstein distance is equivalently
reformulated as

W 2
2 (µ, ν) , inf

T

{∫
Ω

c(x, T (x))dµ(x)

}
.

Let {µτ}τ∈[0,1] be an absolutely continuous curve in P(Ω)
with finite second-order moments. ConsiderW 2

2 (µτ , µτ+h).
Motivated by the Euclidean-space case, if we define
vτ (x) , limh→0

T (xτ )−xτ
h as the velocity of the particle,

a gradient flow can be defined on P(Ω) correspondingly
(Ambrosio et al., 2005).

Lemma 1 Let {µτ}τ∈[0,1] be an absolutely-continuous
curve in P(Ω) with finite second-order moments. Then
for a.e. τ ∈ [0, 1], the above vector field vτ defines a gra-
dient flow on P(Ω) as ∂τµτ + ∇ · (vτ µτ ) = 0, where
∇ · a , ∇>x a for a vector a.

Function F in Section 2.1 is lifted to be a functional in
the space of probability measures, mapping a probability
measure µ to a real value, i.e., F : P(Ω) → R. F is the
energy functional of a gradient flow onP(Ω). Consequently,
it can be shown that vτ in Lemma 1 has the form vτ =
−∇ δF

δµτ
(µτ ) (Ambrosio et al., 2005), where δF

δµτ
is called

the first variation of F at µτ . Based on this, gradient flows
on P(Ω) can be written

∂τµτ = −∇ · (vτ µτ ) = ∇ ·
(
µτ∇(

δF

δµτ
(µτ ))

)
. (1)

Remark 2 Intuitively, an energy functional F character-
izes the landscape structure (appearance) of the correspond-
ing manifold, and the gradient flow (1) defines a solution
path on this manifold. Usually, by choosing appropriate F ,
the landscape is convex, e.g., the Itó-diffusion case defined
below. This provides a theoretical guarantee of optimal
convergence of a gradient flow.
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Itó diffusions as WGFs Itó diffusion defines a stochastic
mapping T : Rd×R→ Rd such that we have T (x, 0) = x
and T (T (x, τ), s) = T (x, s + τ), for all x ∈ Rd and
s, τ ∈ R. A typical example of this family is defined as
T (x, τ) = xτ , where xτ is driven by a diffusion of the
form:

dxτ = ∇U(xτ )dτ + σ(xτ )dW . (2)

Here U : Rd → Rd, σ : Rd → Rd×d are called the
drift and diffusion terms, respectively; W is the standard
d-dimensional Brownian motion. In Bayesian inference, we
seek to make the stationary distribution of xτ approach a par-
ticular distribution p(x), e.g., a posterior distribution. One
solution for this is to set U(xτ ) = 1

2 log p(x) and σ(xτ ) as
the d× d identity matrix. The resulting diffusion is called
Langevin dynamics (Welling & Teh, 2011). Denoting the
distribution of xτ as µτ , it is well known (Risken, 1989)
that µτ is characterized by the Fokker-Planck (FP) equation:

∂τµτ = ∇ ·
(
−µτ∇U +∇ ·

(
µτσσ

>)) . (3)

Note (3) is in the gradient-flow form of (1), where the energy
functional F is defined as†:

F (µ) , −
∫
U(x)µ(x)dx︸ ︷︷ ︸

F1

+

∫
µ(x) log µ(x)dx︸ ︷︷ ︸

F2

(4)

Note F2 is the energy functional of a pure Brownian motion
(e.g., U(x) = 0 in (2)). To verify the FP equation with (1),
the first variation of F1 and F2 is calculated as

δF1

δµ
= −U, δF2

δµ
= logµ+ 1 . (5)

Substituting (5) into (1) recovers the FP equation (3).

Numerical methods Inspired by the Euclidean-space
case, gradient flow (1) can be approximately solved by dis-
cretizing time, leading to an iterative optimization problem,

where for iteration k: µ(h)
k+1 ∈ arg minµ F (µ) +

W 2
2 (µ,µ

(h)
k )

2h .
Specifically, for Itó-diffusion with F defined in (4), the
optimization problem becomes:

µ
(h)
k+1 = arg min

µ
KL (µ‖p(x)) +

W 2
2 (µ, µ

(h)
k )

2h
, (6)

where p(x) , 1
Z e

U(x) is the target distribution. This proce-
dure is called the Jordan-Kinderlehrer-Otto (JKO) scheme.
Remarkably, the convergence of (6) can be guaranteed (Jor-
dan et al., 1998), as stated in Lemma 3.
†We assume σ to be independent of x, which is the case in

Langevin dynamics whose stationary distribution is set to be pro-
portional to e−U(x). As a result, we drop σ in the following.

Lemma 3 Assume that log p(x) ≤ C1 is infinitely differen-
tiable, and ‖∇ log p(x)‖ ≤ C2 (1 + C1 − log p(x)) (∀x)
for some constants {C1, C2}. Let T = hK, µ0 , q0(x),
and {µ(h)

k }Kk=1 be the solution of the functional optimization
problem (6), which are restricted to the space with finite
second-order moments. Then i) the problem (6) is convex;
and ii) µ(h)

K converges to µT in the limit of h → 0, i.e.,
limh→0 µ

(h)
K = µT , where µT is the solution of (3) at T .

Remark 4 Since the stationary distribution of the FP equa-
tion (3) is proportional to eU(x), Lemma 3 suggests that
limk→∞,h→0 µ

(h)
k = 1

Z e
U , a useful property to guide de-

sign of energy functionals for RL, as discussed in Section 4.

3. Particle Approximation for WGFs
We focus on solving Itó diffusions with scheme (6). Directly
reformulating gradient flows as a sequential optimization
problem in (6) is infeasible, because {µ(h)

k } are infinite-
dimensional objects. We propose to use particle approxima-
tion to solve (6), where particles continuously evolve over
time. There exist particle-based algorithms for gradient-flow
approximations, for example, the stochastic and determin-
istic particle methods in (Cottet & Koumoutsakos, 2000;
Russo, 1990; Carrillo et al., 2017). However, they did not
target the JKO scheme, and thus are not applicable to our
setting. Another advantage of the JKO scheme is that it
allows direct application of gradient-based algorithms, once
we get gradients of the particles; thus, it is particularly use-
ful in deep-learning-based methods where parameters are
updated by backpropagating gradients through a network.

Following similar idea as in (Chen et al., 2018), in the k-th
iteration of our algorithm, M particles {x(i)

k }Mi=1 are used
to approximate µ(h)

k : µ(h)
k ≈ 1

M

∑M
i=1 δx(i)

k

. Our goal is to

evolve {x(i)
k } such that the corresponding empirical mea-

sure, µ(h) , 1
M

∑M
i=1 δx(i) , minimizes (6). A standard

method is to use gradient descent to update the particles,

where gradients {∂KL(µ,µ
(h)
k )

∂ x(i) ,
∂W 2

2 (µ,µ
(h)
k )

∂ x(i) } are required ac-

cording to (6). By assuming x
(i)
k to evolve in the form of

x
(i)
k+1 = x

(i)
k +hφ(x

(i)
k ), with function φ restricted to an

RKHS with kernel K(·, ·), the gradient of the KL term is
calculated as (Liu & Wang, 2016):

∂KL(µ(h), µ
(h)
k )

∂ x(i)
∝ 1

M

M∑
j=1

[
K(x(j),x(i))∇x(j) log p(x(j))

+∇x(j)K(x(j),x(i))
]
. (7)

The gradient for W 2
2 (µ(h), µ

(h)
k ) is more involved, as the

distance does not have a closed form. The Wasserstein term
arises due to the Brownian motion in the diffusion process
(2), and the non-differentiability of a sample path from a
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Brownian motion is translated into the Wasserstein distance.
We develop a simple yet effective method to overcome this
issue below.

First, using a particle approximation,W 2
2 (µ(h), µ

(h)
k ) is sim-

plified as
W 2

2 (µ, µ
(h)
k ) = inf

pi,j

∑
i,j

pijc(x
(i),x

(j)
k ) (8)

s.t.
∑
j

pij =
1

M
,
∑
i

pij =
1

M
,

where c(x1,x2) , ‖x1−x2 ‖22. Our goal turns to solving
for the optimal {pij}. Since W2 comes from the Brownian
motion, the energy functional in its gradient flow is defined
as F2 in (4). Solving the gradient flow with the JKO scheme,
at each iteration we minimize λF2 + W 2

2 (µ, µ
(h)
k ) with λ

a regularization parameter. Substituting W 2
2 with (8), in-

troducing Lagrangian multipliers {αi, βi} to deal with the
constraints, and letting cij , c(x(i),x

(j)
k ), the dual problem

is,
L({pij}, {αi}, {βi}) = λ

∑
i,j

pij log pij + pijcij

+
∑
i

αi(
∑
j

pij −
1

M
) +

∑
j

βj(
∑
i

pij −
1

M
)

The optimal pij have forms of p∗ij = uie
−cij/λvj , where

ui , e−
1
2−

αi
λ , vj = e−

1
2−

βj
λ . Assuming {ui} and {vj}

are independent of {x(i)} and {x(j)
k },

∂W 2
2 (µ, µ

(h)
k )

∂ x(i)
∝
∑
j cije

−cij/λ

∂ x(i)

=
∑
j

2
(

1− cij
λ

)
e−cij/λ(x(i)−x

(j)
k ) . (9)

The gradients of particles can be obtained by combining (7)
and (9), which are then optimized using SGD. Intuitively,
from (9), the Wasserstein term contributes in two ways:
i) When cij

λ > 1, x(i) is pulled close to previous particles
{x(j)

k }, with force proportional to (
cij
λ −1)e−cij/λ; ii) when

x(i) is close enough to a previous particle x(j)
k , i.e., cijλ < 1,

x(i) is pushed away, preventing it from collapsing to x
(j)
k .

4. Policy Optimization as WGFs
Reinforcement learning is the problem of finding an optimal
policy for an agent interacting with an unknown environ-
ment, collecting a reward per action. A policy is defined
as a conditional distribution, π(a | s), defining the proba-
bility over an action a ∈ A conditioned on a state vari-
able s ∈ S. Formally, the problem can be described as
a Markov decision process (MDP),M = 〈S,A, Ps, r, γ〉,
where Ps(s′ | s,a) is the transition probability from state
s to s′ given action a; r(s,a) is an unknown reward func-
tion immediately following the action a performed at state
s; γ ∈ [0, 1] is a discount factor regularizing future re-
wards. We denote these variables with a subscript t to
indicate their time dependency. At each time step t, condi-
tioned on the current state st, the agent chooses an action

at ∼ π(·| st) and receives a reward signal‡ r(a, s). The
environment as seen by the agent then updates its state as
st+1 ∼ Ps(·| st,at). The goal is to learn an optimal policy
such that one obtains the maximum expected total reward,
e.g., by maximizing

J(π) =

∞∑
t=1

EPs,π
[
γtr(a, s)

]
= Es∼ρπ,a∼π [r(s,a)] (10)

where ρπ ,
∑∞
t=1 γ

t−1Pr(st = s), and Pr(s) denotes
the state marginal distribution induced by π. Optimizing
the objective in (10) with a maximum entropy constraint
provides us with a framework for training stochastic poli-
cies, where specific forms of these policy distribution are
required, restricting the representation power. To define a
more general class of distributions that can represent more
complex and multimodal distributions, we adopt the general
energy-based policies (Haarnoja et al., 2017), and transform
it into the WGF framework.

Specifically, in the WGF framework, policies form a Rie-
mannian manifold on the space of probability measures.
The manifold structure is determined by the expected total
reward (10), and the geodesic length between two elements
(policy distributions) is defined as the standard second-order
Wasserstein distance. With convex energy functionals (de-
fined below), searching for an optimal policy reduces to
running SGD on the manifold of probability measures.

In the following, we define gradient flows on both parameter-
distribution space and policy-distribution space, leading to
indirect-policy learning and direct-policy learning, respec-
tively. In indirect-policy learning, a WGF is defined over
policy parameters; whereas in direct-policy learning, a WGF
is defined over actions. For both settings, different energy
functionals are defined based on the expected total reward,
as detailed below. We note that most existing deep RL algo-
rithms cannot be included into the two settings, without the
concept of WGF. However, their specific techniques could
be applied as intermediate ingredients in our framework.

4.1. Indirect-policy learning
With indirect-policy learning, we do not optimize the
stochastic policy π directly. Instead, we aim to describe
uncertainty of a policy with parameter distributions (weight
uncertainty). Thus we define a gradient flow on the parame-
ters. Let a policy be parameterized by θ, denoted as πθ. If
we treat θ as stochastic and learn its posterior distribution
p(θ) in response to the expected total reward, the policy is
implicitly learned in the sense that uncertainty in the param-
eter is transferred into the policy distribution in prediction.
Following (Houthooft et al., 2016; Liu et al., 2017), the
objective function is defined as:

max
p
{Ep(θ)[J(πθ)]− αKL(p‖p0)} (11)

‡We assume the reward function to be deterministic, for sim-
plicity; stochastic rewards can be addressed similarly.
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where p0(θ) is the prior of θ; α ∈ [0,+∞) is the tem-
perature hyper-parameter to balance exploitation and ex-
ploration in the policy. If we use an uninformative prior,
p0(θ) = const, the KL term is simplified to the entropy as
maxp{Ep(θ)[J(πθ)] +αH(p)}. By taking the derivative of
the objective function, the optimal distribution is shown to
have a simple closed form of p(θ) ∝ exp (J(πθ)/α) (Liu
et al., 2017). This formulation is equivalent to a Bayesian
formulation of parameter θ, where p(θ) can be seen as the
“posterior” distribution, and exp(J(πθ)/α) is the “likeli-
hood” function. A variational (posterior) distribution for
θ, denoted as µ(θ), is learned by solving an appropriate
gradient-flow problem. We define an energy functional
characterizing the similarity between the current parameter
distribution and the true distribution induced by the total
reward as

F (µ) , −
∫
J(πθ)µ(θ)dθ +

∫
µ(θ) log µ(θ)dθ

= KL (µ‖pθ) , (12)

The energy functional defines a landscape determined by
the expected total reward, and obtains its minimum when
µ = pθ.

Proposition 5 For the gradient flow with energy functional
defined in (12), µ converges to pθ in the infinite-time limit.

To solve the above gradient-flow problem, one can apply the
JKO scheme with a stepsize h (we follow previous notation
to use subscript k to denote discrete-time solutions and
superscript h to denote the stepsize):

µ
(h)
k+1 = arg min

µ
KL (µ‖pθ) +

W 2
2 (µ, µ

(h)
k )

2h
. (13)

The above problem can be directly solved with gradient
descent by adopting the particle approximation described in
Section 3. Specifically, let the current particles be (θ(i))Mi=1.
When calculating ∂KL(µ‖pθ)

∂θ(i) as in (7), we need to evalu-
ate ∇θ(i)J(πθ(i)). This can be approximated with REIN-
FORCE (Williams, 1992) or advantage actor critic (Schul-
man et al., 2016). For example, with REINFORCE,

∇θ(i)J(πθ(i)) ≈
1

T

T∑
t=1

γt−1∇θ(i) log πθ(i)(at | st)Q̂π(st,at)

where T is a horizon parameter, and Q̂π(st,at) is the Q-
value function. We call this variant of our framework Indi-
rect Policy learning with WGF (IP-WGF).

Remark 6 Assume gradients ∇θ(i)J(πθ(i)) and ∇θ(i)W 2
2

are unbiased. Under the limit of M → ∞ and h → 0,
and based on the fact that F in (12) is convex, Lemma 3
suggests the particle approximation converges to the global
minimum pθ. The conclusion applies, in the next section,
similarly in the direct-policy-learning case. Existing meth-
ods such as TRPO (Schulman et al., 2015) and PPO (Schul-
man et al., 2017b) do not have such an interpretation, thus
understanding their underlying convergence is more chal-
lenging. Furthermore, these methods optimize parameters

directly as fixed points, deteriorating their ability to explore
when policy distributions are inappropriately defined, as
stochasticity only comes from the policy distributions.

4.2. Direct-policy learning

When the dimension of parameter space is high, as is often
the case in practice, IP-WGF can suffer from computation
and storage inefficiencies. In direct-policy learning, a gra-
dient flow is defined for the distribution of policies, thus a
policy is directly optimized during learning. This approach
appears to be more efficient and flexible, and connects more
directly to existing works compared with indirect-policy
learning.

Specifically, we consider a general energy-based poli-
cies of the form π(a | s) ∝ exp(−ε(s,a)/α) that is able
to model more complex distributions (Haarnoja et al.,
2017). We formulate the direct-policy learning as policy-
distribution-based gradient flows. The energy functional
is defined with respect to the learned policy π, thus it
should depend on states. To this end, let εs,π(a) =

−Q(at, st), where Q(at, st) , r(at = a, st = s) +
E(st+1,at+1,··· )∼(ρπ,π)

∑∞
l=1 γ

lr(st+l,at+l). Q(at, st) is
seen to be a functional depending on the current st and
at, as well as the policy π. Integrating out the action a, an
energy functional characterizing the similarity of the current
policy π and the optimal policy, ps,π(a | s) ∝ eQ(a,s), is
readily defined as

Fs(π) , −
∫
Q(a, s)π(a | s)da+

∫
π(a | s) log π(a | s)da

= KL (π‖ps,π) . (14)

Remark 7 Soft Q-learning (Haarnoja et al., 2017) adopts
Q(a, s) +H(π) as the objective function, where the entropy
of π, H(π) , −Eπ[log π], is included to add stochasticity
into the corresponding Q-function. By treating the problem
as a WGF, the stochasticity is modeled directly in the policy
distribution, thus we do not include the entropy term, though
it is of no harm to add it in.

Proposition 8 For a WGF with the energy functional de-
fined in (14), π(a | s) converges to ps,π(a) ∝ eQ(a,s) with
Q(a, s) satisfying the following modified Bellman equation:

Q(at, st) = r(at, st) + γEst+1∼ρπ [Vπ(st+1)−H(π(·| st+1))]

where Vπ(st+1) , log
∫
A exp(Q(a, st+1))da.

To solve the corresponding WGF, we again adopt the JKO
scheme as in (13) to optimize the policy π by particle ap-
proximation, i.e., π ∝ 1

M

∑M
i=1 δa(i) . One challenge is that

when calculating ∂KL(π‖ps,π)

∂ a(i) , from (7), one needs to eval-
uate ps,π(a(i)), which is difficult due to the infinite time
horizon and the unknown reward function r(s,a) when cal-
culatingQ(a(i), s). To address this, we approximate the soft
Q-function, Q(·, s), with a deep neural network Qθ

s (s,a)
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parametrized by θ, i.e., ps,π(a) ∝ eQ
θ
s (s,a). The neural

network Qθ
s naturally leads to a soft approximation of the

standard Q-function according to Proposition 8. As a re-
sult, the learning can be done by alternating between the
following two steps.

1) Optimizing the policy Given Qθ
s , we could adopt the

particle approximation with the JKO scheme to optimize the
policy. However, since a policy is a conditional distribution,
one needs to introduce a set of particles for each state. For
large or continuous state space, this becomes intractable.
To mitigate this problem, we propose to use a stochastic
state-conditioned neural network fφφφ parametrized by φφφ to
approximate the policy. We call such a network a sampling
network.

The input to fφφφ is a concatenation of a state s and a random-
noise sample ξ drawn from a simple distribution, e.g., the
standard normal distribution. To optimize the sampling
network, note that the JKO scheme, with energy functional
(14), is written as (we rewrite π as πφφφ to explicitly indicate
the dependence of π on φφφ):

πφ
φφ
k+1 = arg min

πφφφ
KL
(
πφ
φφ‖ps,π

)
+
W 2

2 (πφφφ, πφφφk )

2h
, Jφ

φφ
π . (15)

The outputs of fφφφ({ξi}; st) are particles (a
(i)
t )Mi=1. Using

chain rule we calculate the gradient of φφφ as

∂Jφφφπ
∂φφφ

= E{ξi}

[
∂Jφφφπ

∂ a
(i)
t

∂ a
(i)
t

∂φφφ

]
.

Thus φφφ can be updated using standard SGD, where
∂Jφφφπ /∂ a

(i)
t represents particle gradients in the WGF, and is

approximated using techniques from Section 3; ∂ a(i)
t /∂φφφ

can be calculated by standard backpropagation.

2) Optimizing the Q-network· We optimize the Q-
network using the Bellman error as in the soft-Q learning
setting (Haarnoja et al., 2017). Specifically, in each iteration,
we optimize the following objective function:

JQ(θ) , Est∼qst ,at∼qat

[
1

2

(
Q̂θ̄
s (st,at)−Qθ

s (st,at)
)2
]
,

where qst and qat are arbitrary distributions with
support on S and A, respectively; Q̂θ̄

s (st,at) =
r(st,at)+γEst+1∼ρπ [V θ̄

s (st+1)] is the targetQ-value, with

V θ̄
s (st+1) = logEqa′ [

exp(Qθ̄
s (st+1,a

′))
qa′ (a

′) ] − H(qa′); θ̄ repre-
sents the parameters of the target Q-network, as used in
standard deep Q-learning (Mnih et al., 2013). qat can be
set to the distribution induced by the sampling network fφφφ

(Haarnoja et al., 2017). Alternatively, the form of qat can be
explicitly defined, e.g., using isotropic Gaussian or mixture
of Gaussian distributions. The full algorithm is given in
Section G of the SM. We call this variant of our framework
Direct Policy learning with WGF (DP-WGF).

Reducing Variance Note that when optimizing the
Q-network, one needs to calculate the V θ

s -function.
This includes an integration over qa′ , which endows the
high variance associated with Monte Carlo integration.
Consequently, we propose to learn a V -network to
approximate V θ

s , denoted as V̄ψψψ(s) with parameter ψψψ. To
learn the V -network, similar to (Haarnoja et al., 2018),
we use an explicit policy distribution. As a result, we
replace the sampling network fφφφ with a BNN discussed
in Section 4.1, whose induced policy distribution is
denoted π̃φφφ. Intuitively, V θ

s (s) can be considered an
approximation to the log-normalizer of exp(Qθ

s (s,a)) over
a. From the definition, the objective is defined as: JV (ψψψ) ,
Est∼qst

(
V̄ψψψ(st) − logEat∼π̃φφφ(st) exp

(
Qθ
s (st,at)/π̃φφφ(at | st)

)
−Eat∼π̃φφφ(st) log π̃φφφ(at | st)

)2. In our implementation, we
find the following approximation works well: JV (ψψψ) ,

Est∼qst

(
V̄ψψψ(st)− Eat∼π̃φφφ(st)[Q

θ
s (st,at)− log π̃φφφ(at | st)]

)2

,
which is inspired by (Haarnoja et al., 2018). We call this
variant Direct Policy learning with WGF and Variance
reduction (DP-WGF-V).

5. Connections with Related Works
Soft-Q learning Though motivated from different per-
spectives, our DP-WGF results in a similar algorithm as
soft-Q learning with energy based policies (Haarnoja et al.,
2017). However, DP-WGF is more general, in that we can
define different sampling networks, such as a BNN, which
can be optimized with the proposed IP-WGF technique.

Soft actor-critic (SAC) SAC (Haarnoja et al., 2018) is
an improvement of soft-Q learning, introducing a similar
V -network as ours and modeling the policy with a mixture
of Gaussians. DP-WGF-V is related to SAC, but with a
V -network from a different perspective (variance reduction).
Importantly, we define a gradient flow for policy distribu-
tions, allowing optimization from a distribution perspective.

Trust-region methods Trust-Region methods are known
to stabilize policy optimization in RL (Schulman et al.,
2015). Schulman et al. (2017a) illustrate the equivalence
between soft Q-learning and policy gradient. In the original
TRPO setting, an objective function is optimized subject to
a constraint that the updated policy is not too far from the
current policy, in terms of the KL divergence (see Section G
for a more detailed descriptions). The theory of TRPO sug-
gests adding a penalty to the objective instead of adopting
a constraint, resulting in a similar form as our framework.
However, we use the Wasserstein distance to penalize the
previous and current policies, which is a weaker metric than
the KL divergence, and potentially leads to more robust solu-
tions. This is evidenced by the development of Wasserstein
GAN (Arjovsky et al.). As a result, our framework can be
regarded as a trust-region-based counterpart for solving the
soft Q-learning (Haarnoja et al., 2017) and SVPG (Liu et al.,
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Dataset PBP SVGD WGF

Boston -2.57 ± 0.09 -2.50±0.03 −2.40± 0.10
Concrete -3.16 ± 0.02 -3.08±0.02 −2.95± 0.06
Energy -2.04 ± 0.02 -1.77±0.02 −0.73± 0.08
Kin8nm 0.90 ± 0.01 0.98± 0.01 0.97 ± 0.02
Naval 3.73 ± 0.01 4.09±0.01 4.11± 0.02
CCPP -2.80 ± 0.05 -2.82±0.01 −2.78± 0.01

Winequality -0.97 ± 0.01 -0.93±0.01 −0.87± 0.04
Yacht -1.63 ± 0.02 -1.23±0.04 −0.99± 0.15

Protein -2.97 ± 0.00 -2.95±0.00 −2.88± 0.01
YearPredict -3.60±NA -3.58 ± NA −3.57±NA

Table 1. Averaged predictions, with standard deviations, in terms
of test log-likelihood.

2017). Similar arguments hold for other trust-region meth-
ods such as PPO (Schulman et al., 2017b) and Trust-PCL
(Nachum et al., 2017), which improve TRPO with either
different objective or trust-region constraints.
Noisy exploration Adding noise to the parameters for
noisy exploration (Fortunato et al., 2018; Plappert et al.,
2018) can be interpreted as a special case of our IP-WGF
framework with a single particle. Isotropic Gaussian noisy
exploration corresponds to the maximum a posterior (MAP)
solution with a Gaussian assumption on the posterior dis-
tributions of parameters, potentially leading to inferior so-
lutions when the assumption is not met. By contrast, our
method is endowed with the ability to explore multimodal
distributions, by optimizing the parameter distribution di-
rectly. More details are provided in Section C of the SM.

6. Experiments
We test the proposed WGF framework from two per-
spectives: i) the effectiveness of the proposed particle-
approximation method for WGF, and ii) the advantages
of the WGF framework for policy optimization. For i), a
standard regression model to learn optimal parameter dis-
tributions, i.e., posterior distributions. For ii), we test our
algorithms on several domains in OpenAI rllab and Gym

(Duan et al., 2016). All experiments are conducted on a
single Tesla P100. Detailed settings are given in the SM.

6.1. Regression
We use a single-layer BNN as a regression model. The
parameters of the BNN are treated probabilistically and opti-
mized with our WGF framework. We compare WGF, SVGD
(Liu & Wang, 2016), Bayesian Dropout (Gal & Ghahramani,
2016) and PBP (Hernández-Lobato & Adams, 2015). The
RMSprop optimizer is employed. Detailed experimental
settings and datasets are described in Section D.2 of the
SM. We adopt the root-mean-squared error (RMSE) and test
log-likelihood as the evaluation criteria. The experimental
results are shown in Table 1 (complete results are provided
in Section D.2 of the SM). It is observed that our proposed
WGF obtains better results in both metrics, partially due
to the flexibility of our particle approximation algorithm,
which solves the original WGF problem effectively.

Figure 1. Learning curves by IP-WGF and SVPG with REIN-
FORCE and A2C.

6.2. Indirect-policy learning
For this group of experiments, we compare IP-WGF
with SVPG (Liu et al., 2017), a state-of-the-art method
for indirect-policy learning, considering three classical
continuous-control tasks: Cartpole Swing-Up, Double Pen-
dulum, and Cartpole. Only policy parameters are updated
by IP-WGF or SVPG, while the critics are updated with
TD-error. We train our agents for 100 iterations on the
easier Cartpole domain and 1000 iterations on the other
two domains. Following the settings in (Liu et al., 2017;
Houthooft et al., 2016; Zhang et al., 2018), the policy is
parameterized as a two-layer (25-16 hidden units) neural
network with tanh activation function. The maximum hori-
zon length is set to 500. A sample size of 5000 is used for
policy gradient estimation. We use M = 16 particles to
approximate parameter distributions, and h = 0.1 as the
discretized stepsize.

REINFORCE (Williams, 1992) and advantage actor
critic (A2C) (Schulman et al., 2016) are used as strategies
of policy learning. Figure 2 plots the mean (dark curves)
and standard derivation (light areas) of rewards over 5 runs.
It is clear that in all tasks IP-WGF consistently converges
faster than SVPG, and finally converges to higher average
rewards. The results are comparable to (Houthooft et al.,
2016). The experiments demonstrate that employing the
Wasserstein gradient flows on policy optimization improves
the performance, as suggested by our theory.



Policy Optimization as Wasserstein Gradient Flows

WGF-DP-V SAC TRPO-GAE DDPG
Domain Threshold MaxReturn. Episodes MaxReturn Epsisodes MaxReturn Episodes MaxReturn Episodes

Swimmer 100 181.60 76 180.83 112 110.58 433 49.57 N/A
Walker 3000 4978.59 2289 4255.05 2388 3497.81 3020 2138.42 N/A
Hopper 2000 3248.76 678 3146.51 736 2604 1749 1317 N/A

Humanoid 2000 3077.84 18740 2212.51 26476 5411.15 32261 2230.60 34652

Table 2. WGF-DP-V, TRPO, SAC, and DDPG results showing the max average rewards attained and the episodes to cross specific reward
thresholds. WGF-DP-V often learn more sample-efficiently than the baselines, and WGF-DP-V can solve difficult domains such as
Humanoid better than DDPG.

Figure 2. Average return in MuJoCo tasks by Soft-Q, SAC and DP-WGF-V (first row), and by DDPG, TRPO-GAE and DP-WGF-V
(second row). From left to right, the tasks are: Swimmer, Hopper, Walker and Humanoid, respectively.

6.3. Direct-policy Learning
We compare our DP-WGF and DP-WGF-V frameworks
with existing off-policy and on-policy deep RL algorithms
on several tasks in MuJoCo, e.g., SAC, Soft-Q, DDPG (off-
policy) and TRPO-GAE (on-policy). Our DP-WGF-V is
considered to be an off-policy actor-critic method. For all
methods, value function and policy are parameterized as
two-layer (128-128 hidden units) neural networks with tanh
as the activation function. The maximum horizon length is
set to 1000 when simulating expected total rewards. Three
easier tasks (Swimmer, Hopper and Walker) in MuJoCo
can be solved by a wide range of algorithms; while the
more complex benchmark, the 21-dimensional Humanoid, is
known to be very difficult to solve with off-policy algorithms
(Duan et al., 2016). Implementation details of the algorithms
are specified in Section E.3 of the SM.

Effectiveness of the Wasserstein trust-region We eval-
uate DP-WGF-V against SAC, and DP-WGF against Soft-Q
on four Mujoco tasks, as they are closely related to our
algorithms. Figure 2 (first row) plots average returns over
epochs on the tasks. Similarly, our WGF-based methods
converge faster and better than their counterparts due to the
introduction of WGFs. Furthermore, by variance reduction,
DP-WGF-V significantly outperforms DP-WGF on all tasks.

Comparisons with popular baselines Finally we com-
pare DP-WGF-V with TRPO-GAE (Schulman et al., 2016)

and DDPG (Lillicrap et al., 2016) on the same Mujoco tasks.
In general, TRPO-GAE has been a state-of-the-art method
for policy optimization. Figure 2 (second row) plots average
returns over episodes, and it is observed that DP-WGF-V
consistently outperforms other algorithms. Table 2 summa-
rizes some key statistics, including the best attained average
rewards and the episodes to reach the reward thresholds. It
is observed that DP-WGF-V consistently outperform TRPO-
GAE and DDPG in terms of sample complexity, and often
achieves higher rewards than TRPO-GAE. A particularly
notable case, on Humanoid, shows DP-WGF-V substan-
tially outperforms TRPO-GAE in terms of sample efficiency,
while DDPG cannot learn a good policy at all.

7. Conclusion
We lift policy optimization to the space of probabilistic
distributions, and interpret it as Wasserstein gradient flows.
Two types of WGFs are defined for the task, one on the
parameter-distribution space and the other on the policy-
distribution space. The WGFs are solved by a new particle-
approximation-based algorithm, where gradients of particles
are calculated in closed forms. Under some circumstance,
optimization on probability-distribution space is convex,
thus it is easier to deal with compared to existing methods.
Experiments are conducted on a number of reinforcement-
learning tasks, demonstrating the superiority of the proposed
framework compared to related algorithms.
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