
Supplemental Material for
Policy Optimization as Wasserstein Gradient Flows

A. More Details on Preliminaries
We provide more details on some parts of the preliminaries
section in the main text.

A.1. Gradient Flows on the Euclidean Space

For a smooth (convex) function§ F : Rn → R, a starting
point x0 ∈ Rn. The gradient flow of F (x) is defined as the
solution of the following function:{

dx
dt = −∇F (x(t)), for t > 0
x(0) = x0

(16)

This is a standard Cauchy problem (Rulla, 1996), which
has a unique solution if∇F is Lipschitz continuous. When
F is non-differentiable, we can replace the gradient with
the subgradient, defined as ∂F (x) , {p′ ∈ Rn : F (y) ≥
F (x) + p ·(y−x),∀y ∈ Rn}. Note ∂F (x) = {∇F (x)}
if F is differentiable at x. In this case, the gradient flow
formula above is replaced as: dx

dt ∈ −∂F (x(t)).

Numerical solution Exact solution to the gradient-flow
problem (16) is typically intractable. Numerical methods is
a default choice. A standard method to solve (16) is called
Minimizing Movement Scheme (MMS), which is an iterative
scheme that evolves x along the gradient of F on the current
point for a small step in each iteration. Specifically, let the
current point to be xk, the next point is defined as xk+1 =
xk −∇F (xk+1)h, with h being the stepsize. Note xk+1 is
equivalent to solving the following optimization problem:

xk+1 = arg min
x
F (x) +

‖x−xk ‖2

2h
.

To explicitly spell out the dependency of xk w.r.t. h, we
rewrite xk as x(h)

k . The numerical scheme can be proved to

be accurate. Specifically, define v
(h)
k+1 ,

x
(h)
k+1−x

(h)
k

h . Also
define two curves xh, x̃h : [0, T] → Rn for t ∈ (kh, (k +
1)h] as:

xh(t) = x
(h)
k+1, x̃h(t) = x

(h)
k +(t− kh)v

(h)
k+1 .

The MMS is proved to converge to the original gradient flow
(Ambrosio et al., 2005), stated in the following theorem.

§We will focus on the convex case since this the case for many
gradient flows on the space of probability measures, detailed later.

Theorem 9 Let vh(t) , v
(h)
k+1 defined above. Suppose

F (x0) < +∞ and inf F > −∞. If¶ h → 0, x̃h and xh

converge uniformly to a same curve x(t), and vh weakly
converges in L2 to a vector function v(t), such that dx

dt = v.
Furthermore, if the partial derivatives of F exist and are
continuous, we have v(t) = −∇F (x(t)) for all t.

B. Sketch Proofs for RL with WGF
Proof [Proof of Proposition 5]

We provide two methods for the proof.

The first method directly uses property of gradient flows.
Note that the WGF is defined as

∂τµτ = −∇ · (vτ µτ) = ∇ ·
(
µτ∇(

δF

δµτ
(µτ))

)
, −∇WF (µτ) .

Denote the inner product in the probability space induced
by W2 as 〈·, ·〉W , we have

d

dτ
F (µτ) = 〈∇WF (µτ),

d

dτ
µτ 〉W

= −〈∇WF (µτ),∇WF (µτ)〉W . (17)

For any τ1 ≥ τ0, integrating (17) over [t0, t1], we have

F (µτ1)− F (µτ0)

=−
∫ τ1

τ0

〈∇WF (µτ),∇WF (µτ)〉Wdτ ≤ 0 ,

where the last inequality holds due to the positiveness of the
norm operator. Consequently, we have F (µτ1) ≤ F (µτ0),
which means the energy functional F decreases over time.
In our case, the energy functional is defined as the KL diver-
gence, which is convex in terms of distributions. As a result,
evolving µτ along the gradient flow would reach the global
minimum of the energy functional, i.e., limτ→∞ µτ =
eJ(πθ).

The second way uses property of the Fokker-Planck equation
for diffusions. Since the WGF with energy functional in
(12) is equivalent to a Fokker-Planck equation. Specifically,

¶h can also be a decreasing-stepsize sequence {hk} such that
hk → 0.

Policy Optimization as Wasserstein Gradient Flows

according to Section 2.2, the solution of the gradient flow is
described by the following Fokker-Planck equation:

∂τµτ = ∇ · (−µτ∇J(πθ) +∇ · (µτ)) , (18)

On the other hand, it is well known that the unique invariant
probability measure for the FP equation (18) is:

µ = eJ(πθ) = lim
τ→∞

µτ .

This completes the proof.

Proof [Proof of Proposition 8] The first part of Proposition 8,
stating that π(a | s) converges to ps,π(a) ∝ eQ(a,s), follows
by the same argument as the proof of Proposition 5. Now
we derive the soft Bellman equation.

This follows from the definition of Q(at, st), i.e.,

Q(at, st)

=r(at, st) + E(st+1,at+1,···)∼(ρπ,π)

∞∑
l=1

γlr(st+l,at+l)

=r(at, st) + γEst+1∼ρπEat+1∼π [r(at+1, st+1)

+E(st+2,at+2···)∼(ρπ,π)

∞∑
l=1

γlr(st+1+l,at+1+l)

]

Since π(a | s) = eQ(a,s)−Vπ(s) where Vπ(s) =∫
AQ(a, st+1)da, we have

Q(at, st) = r(at, st)

+ γEst+1∼ρπ [Vπ(st+1)−H(π(·| st+1))]

C. More Details on Related Works
For reference, in addition to Section 5, we provide more
details on the connection of our framework compared to
existing methods.

Connections with trust region methods Trust Region
methods can stabilize policy optimization in RL (Nachum
et al., 2017; Kakade, 2002). We can also show the connec-
tion between the proposed method and TRPO (Schulman
et al., 2015). In TRPO, an objective function is maximized
subjected to a constraint on the size of policy update. Specif-
ically,

max
φφφ

Êt
[

πφ(·| s)
πφk−1(·| s)

Âk

]
(19)

subject to Êt
[
KL[πφ(·| s), πφk−1(·| s)]

]
≤ δ (20)

Here, πφ is a stochastic policy; φk−1 is the vector of policy
parameters before the k-th update; Âk is an estimator of
the advantage function at timestep k. The theory of TRPO
suggests using a penalty instead of a constraint, i.e., solving
the unconstrained optimization problem,

max
φφφ

Êt
[
πφ(·| s)
πφt−1(·| s)

Ât − βKL[πφ(·| s), πφt−1(·| s)]
]

(21)

In our proposed framework, the Wasserstein distance be-
tween πφ(·| s) and πφk−1(·| s), a weaker metric than the KL
divergence, constrains the update of a policy on a manifold
endowed with the Wasserstein metric, and potentially leads
to more robust solutions. This is evidenced by the develop-
ment of Wasserstein GAN (Arjovsky et al.). As a result, our
framework can be regarded as a trust region based counter-
part for solving the soft Q-learning problem (Haarnoja et al.,
2017).

Connections with noisy exploration In our framework,
adding noise to the parameters, leading to noisy exploration
can be interpreted as a special case of indirect policy learn-
ing with single particle. As shown in (Fortunato et al., 2018;
Plappert et al., 2018), independent Gaussian noisy linear
layer is defined as.

y
def
= (µw + σw � εw)x+ µb + σb � εb, (22)

The parameters µw ∈ Rq×p, µb ∈ Rq, σw ∈ Rq×p and
σb ∈ Rq are learnable whereas εw ∈ Rq×p and εb ∈ Rq
are random noises, where p and q are the number of hidden
units of connected layers.

It corresponds to the maximum a posterior (MAP) with a
Gaussian assumption on the posterior distributions of pa-
rameters (weight uncertainty). In our framework, we can
explicitly (Liu & Wang, 2016) or implicitly (Blundell et al.,
2015) define the weight uncertainty. Especially, when em-
ploying SGLD (Welling & Teh, 2011) to approximate the
posterior distributions of parameters, we will using noisy
gradient instead of noisy weights in the parameter space.

Previous work, such as DDPG (Lillicrap et al., 2016), adding
noise to the action to encourage exploration can be regarded
as a special case of DP-WGF. Adding noise in parame-
ter space has shown superiority with action space, but the
computational cost of employing particles to approximate
parameter distribution is much higher than that of directly
approximate policy distribution. Previous work (Fortunato
et al., 2018; Plappert et al., 2018) made a trade-off and
optimize the MAP instead of the distribution.

Policy Optimization as Wasserstein Gradient Flows

D. Extensive Experiments
To optimize over the discretized WGF via the JKO scheme
(6), to need to specify the discretized stepsize h. In addition,
we have an additional hyparameter λ in the gradient formula
of W 2

2 . Also note that we can only evaluate the gradient of
W 2

2 up to a constant, there needs to a parameter balancing
the gradient of the energy functional F and the Wasserstein
term. We denote this hyparameter as ε. In the experiments, if
not explicitly stated, the default setting for these parameters
are ε = 0.4, and λ = med2/ logM . Here med is the median
of the pairwise distance between particles of consecutive
policies. Adam (Kingma & Ba, 2015) optimizer is used for
all experiments, except the BNN regression, for which we
use RMSPorp (Hinton et al., 2012).

D.1. Comparative Evaluation

DP-WGF-V learns substantially faster than popular base-
lines on four tasks. In the Humanoid task, even though
TRPO-GAE does not outperforms DP-WGF-V within the
range depicted in the Figure 2, it achieves good final re-
wards after more episodes. The quantitative results in our
experiments are also comparable to results reported by other
methods in prior work (Duan et al., 2016; Gu et al., 2017;
Henderson et al., 2018; O’Donoghue et al., 2016; Mnih et al.,
2016), showing sample efficiency and good performance.

D.2. BNN for regression

For SVGD-based methods, we use a RBF kernel κ(θ,θ′) =
exp(−‖θ − θ′‖22/m), with the bandwidth set to m =
med2/ logM . Here med is the median of the pairwise dis-
tance between particles. We use a single-layer BNN for
regression tasks. Following (Blundell et al., 2015), 10
UCI public datasets are considered: 100 hidden units for 2
large datasets (Protein and YearPredict), and 50 hidden units
for the other 8 small datasets. We repeat the experiments
20 times for all datasets except for Protein and YearPre-
dict, which we repeat 5 times and once, respectively, for
computation consideration (Blundell et al., 2015). The ex-
periment settings are almost identical to those in (Blun-
dell et al., 2015), except that the prior of covariances fol-
low Inv-Gamma(1, 0.1). The batch size for the two large
datasets is set to 1000, while it is 100 for the small datasets.
The datasets are randomly split into 90% training and 10%
testing. Table 3 shows the complete results for different
models on all the datasets.

D.3. Toy example in a multi-goal environment

We use the similar toy example as in softQ-learning to show
that our proposed , where the environment is defined as a
multi-modal distribution,

Figure 3 illustrates a 2D multi-goal environment. The left

Figure 3. DP-WGF-V on multi-goal Environment.

one shows trajectories from a policy learned with DP-WGF-
V. The x and y axes correspond to 2D positions (states).
The agent is initialized near the origin, and the first step of
trajectory is omitted. Red dots are depicted goals and the
environment is terminated once the distance between the
agents and some goal meets predefined threshold. The level
curves show the distance to the goal.

Q-values at three selected states (-2.5, 0), (0, 0), (2.5, 2.5)
are presented on the right, depicted by level curves (yellow:
high values, red: low values). The x and y axes corre-
spond to 2D velocity (actions) bounded between -1 and 1.
Actions sampled from the policy are shown as blue stars.
The experiments shows that our methods have the ability to
learn multi-goal policies while achieving better stability and
rewards than soft-Q learning.

D.4. Hyperparameter Sensitivity

0 100 200 300 400 500

Epoch

0

20

40

60

80

100

120

140

A
ve

ra
ge

 R
et

ur
n

Swimmer

0.1
0.5
1
5

Figure 4. Sensitivity of Hyper-parameters

We further conduct experiments on Swimmer-v1 task to
analysis the influence of different Wasserstein-2 scale ε. We
run the algorithm for 500 epochs and 5 re-runs. Figure
4(a) shows the mean of average return against epoch. From
the experiments, with appropriate ε, the learning curves
become more stable and achieves higher final rewards; while

Policy Optimization as Wasserstein Gradient Flows

Test RMSE ↓ Test Log likelihood ↑
Dataset Dropout PBP SVGD WGF Dropout PBP SVGD WGF
Boston 4.32 ± 0.29 3.01 ± 0.18 2.96±0.10 2.46± 0.34 -2.90 ± 0.07 -2.57 ± 0.09 -2.50±0.03 −2.40± 0.10

Concrete 7.19 ± 0.12 5.67 ± 0.09 5.32±0.10 4.59± 0.29 -3.39 ± 0.02 -3.16 ± 0.02 -3.08±0.02 −2.95± 0.06
Energy 2.65 ± 0.08 1.80 ± 0.05 1.37±0.05 0.48± 0.04 -2.39 ± 0.03 -2.04 ± 0.02 -1.77±0.02 −0.73± 0.08
Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09± 0.00 0.09± 0.00 0.90 ± 0.01 0.90 ± 0.01 0.98± 0.01 0.97 ± 0.02
Naval 0.01 ± 0.00 .01± 0.00 0.00±0.00 0.00± 0.00 3.73 ± 0.12 3.73 ± 0.01 4.09±0.01 4.11± 0.02
CCPP 4.33 ± 0.04 4.12± 0.03 4.03±0.03 3.88± 0.06 -2.89 ± 0.02 -2.80 ± 0.05 -2.82±0.01 −2.78± 0.01

Winequality 0.65 ± 0.01 0.64 ± 0.02 0.61±0.01 0.57± 0.03 -0.98 ± 0.01 -0.97 ± 0.01 -0.93±0.01 −0.87± 0.04
Yacht 6.89 ± 0.67 1.02 ± 0.05 0.86±0.05 0.56± 0.16 -3.43 ± 0.16 -1.63 ± 0.02 -1.23±0.04 −0.99± 0.15

Protein 4.84 ± 0.03 4.73 ± 0.01 4.61±0.01 4.24± 0.02 -2.99 ± 0.01 -2.97 ± 0.00 -2.95±0.00 −2.88± 0.01
YearPredict 9.03 ± NA 8.88 ± NA 8.68± NA 8.66±NA -3.62 ± NA -3.60±NA -3.58 ± NA −3.57±NA

Table 3. Averaged predictions with standard deviations in terms of RMSE and log-likelihood on test sets.

too large scale of ε will reduce the final rewards of policy,
since the update size is excessively restricted. The results
also show that the scale ε of Wasserstein trust-region is not
parameter sensitive.

E. Implementation Details
E.1. Smoothing previous policy

Towards Wasserstein-2 distance, we need to use consecu-
tive to compute policies W 2

2 (πφφφ(·| st), πφφφ(·| st)). For the
previous policy πφφφ(·| st), there are two strategy to get it. i)
policy of last iteration, i.e. φφφ = φφφk−1. ii) moving average
of prior policy, i.e. φφφ = (1 − τ)φφφ + τφφφk−1. Empirically,
when the learning curve is stable, (e.g. Half-Cheetah-v1),
adopting strategy i) is helpful, and strategy ii) will reduce
the speed of convergence and may lead lower final rewards;
Otherwise, strategy ii) will help stabilize the training, and
speed up the convergence.

Table 4. Shared parameters of direct policy learning

Parameter Symbol Value
horizon 500

batch size 5000
learning rate 5×10−3

discount γ 0.99
hidden units [25, 16]

variance (prior) 0.01
temperature α {6, 7, 8, 9, 10, 11}

E.2. Indirect Policy learning

For the easy task, Cartpole, all agents are trained for 100
episodes. For the two complex tasks, Cartpole Swing-Up
and Double Pendulum, all agents are trained up to 1000
episodes. SVPG and IP-WGF shared the same hyperparam-
eters, except the temperature, for which we performed a
grid search over α ∈ {6, 7, 8, 9, 10, 11}.

E.3. Direct-Policy learning

We use OpenAI gym‖ (Brockman et al., 2016) and rl-
lab∗∗ (Duan et al., 2016) baselines implementations for
TRPO and DDPG. SAC†† and Soft-Q‡‡ implementation are
used, and we use recommended parameters.

Hyperparameters Table 5 lists the common DP-WGF-V,
DP-WGF, SAC and Soft-Q parameters used in the compara-
tive evaluation in Figure 2, and Table 2 lists the parameters
that varied across the environments. For SAC, we use 4
components of mixture Gaussian. For DP-WGF and Soft-Q,
32 particles are used to approximate policy distributions.

Table 5. Shared parameters of indirect policy learning

Parameter Symbol Value
horizon 1000

batch size 64
learning rate 3 · 10−4

discount γ 0.99
target smoothing coefficient τ 0.01

number of layers (3 networks) 2
number of hidden units per layer 128

gradient steps 1
scale of Wasserstein trust-region 0.4

Table 6. Environment Specific Parameters

Environment DoFs Reward Scale Replay Pool
Swimmer 2 100 106

Hopper-v1 3 1 106

Walker2d-v1 6 3 106

Humanoid 21 3 106

‖https://github.com/openai/baselines
∗∗https://github.com/rll/rllab/tree/master/examples
††https://github.com/haarnoja/sac
‡‡https://github.com/haarnoja/softqlearning

Policy Optimization as Wasserstein Gradient Flows

F. Demos
Demos of our framework on a set of RL tasks can be ac-
cessed online via: https://sites.google.com/view/wgf4rl/ .

G. Algorithm Details
For completeness, we list the detailed algorithms for IP-
WGF, DP-WGF and DP-WGF-V in Algorithms 1, 2 and 3,
respectively.

Algorithm 1 DP-WGF
Require: D = ∅; initialize θ,φφφ ∼ some (prior) distribution.

Target parameters: θ ← θ, φφφ← φφφ
for each epoch do

for each t do
% Collect expereince

Sample an action at from policy πφφφ(·| st).
Sample next state from the environment: st+1 ∼
ps(st+1 | st,at)
Save the new experience in the replay memory:
D ← D ∪ {st,at, r(st,at), st+1}
% Sample from the replay memory
{(s(i)

t ,a
(i)
t , r

(i)
t , s

(i)
t+1)}Ni=0 ∼ D.

% Update Q function

Compute empirical values V̂ θ(s
(i)
t+1)

Compute empirical gradient ∇̂θJQ(θ)
Update θ according to it using ADAM
% Update policy

Compute W 2
2 (πφφφ(·| st), πφφφ(·| st)),

Compute empirical gradient ∇̂φφφJπ(φφφ)

Update prior policy parameters: φφφ← φφφ
Update θ according to it using ADAM
% Update target

Update target Q function parameters:
θ ← τθ + (1− τ)θ

end for
end for

Algorithm 2 IP-WGF
Require: Initialize policy particles Θ ∼ some (prior) dis-

tribution as a Bayesian neural network.
for each iteration do

Reset FIFO replay pool R
for each timestep t in episodes do

Sample at from πφ(·| st)
Sample next state from the environment: st+1 ∼
ps(st+1 | st,at)
Save experience in to FIFO replay pool R:
for each particles θ(i) ∈ Θ do

Compute W 2
2 (Θ

(i)
,Θ(i))

Compute empirical gradient∇θ(i)J(πθ(i))

Save current particles θ
(i) ← θ(i)

Update policy particle θ(i)

end for
end for

end for

Algorithm 3 DP-WGF-V
Require: D = ∅; initialize θ,φφφ,ψψψ ∼ some (prior) distribu-

tion. Target parameters: θ ← θ, φφφ← φφφ
for each epoch do

for each t do
% Collect expereince

Sample an action at from policy πφφφ(·| st).
Sample next state from the environment: st+1 ∼
ps(st+1 | st,at)
Save the new experience in the replay memory:
D ← D ∪ {st,at, r(st,at), st+1}
% Sample from the replay memory

{(s(i)
t ,a

(i)
t , r

(i)
t , s

(i)
t+1)}Ni=0 ∼ D.

% Update Q function

Compute empirical gradient ∇̂θJQ(θ)
Update θ according to it using ADAM
% Update value function

Compute empirical gradient ∇̂ψψψJV (ψψψ)
Update ψψψ according to it using ADAM
% Update policy

Compute W 2
2 (πφφφ(·| st), πφφφ(·| st)),

Compute empirical gradient ∇̂φφφJφπ
Update prior policy parameters: φφφ← φφφ
Update φφφ according to it using ADAM
% Update target

Update target value parameters:
ψψψ ← τψψψ + (1− τ)ψψψ

end for
end for

https://sites.google.com/view/wgf4rl/

