
Scalable Bayesian Learning of Recurrent Neural Networks for Language
Modeling: Supplementary Material

Zhe Gan∗, Chunyuan Li∗†, Changyou Chen, Yunchen Pu, Qinliang Su, Lawrence Carin
Department of Electrical and Computer Engineering, Duke University
{zg27, cl319, cc448, yp42, qs15, lcarin}@duke.edu

A Gated Recurrent Units

Similar to the LSTM unit, the GRU (Cho et al.,
2014) has gating units that modulate the flow of
information inside the unit, however, without us-
ing a separate memory cell. Specifically, the GRU
has two gates: the reset gate rt and the update gate
zt. The hidden units ht are updated as follows:

rt = σ(Wrxt +Urht−1 + br) , (1)

zt = σ(Wzxt +Uzht−1 + bz) , (2)

h̃t = tanh(Whxt +Uh(rt � ht−1) + bh) ,
(3)

ht = (1− zt)� ht−1 + zt � h̃t , (4)

where σ(·) denotes the logistic sigmoid function,
and � represents the element-wise multiply oper-
ator. W{r,z,h} are encoding weights, and U{r,z,h}
are recurrent weights. b{r,z,h} are bias terms.

B Model Details

B.1 Standard Language Modeling
For an input sequence X = {x1, . . . ,xT }, where
xt is the input data vector at time t, we define an
output sequence Y = {y1, . . . ,yT } with yt =
xt+1 for t = 1, . . . , T − 1. x1 and yT are always
set to a special START and END token, respec-
tively. The probability p(Y|X) is defined as

p(Y|X) =

T∏
t=1

p(yt|x≤t) =
T∏
t=1

p(yt|ht) . (5)

At each time t, there is a decoding function
p(yt|ht) = softmax(Vht) to compute the dis-
tribution over words, where V are the decoding
weights. The hidden states are recursively updated
by ht = H(ht−1,xt), where H is a nonlinear
function such as the LSTM or GRU defined above.
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B.2 Image Captioning

Image caption generation is considered as a con-
ditional language modeling problem, where image
features are first extracted by residual network (He
et al., 2016) as a preprocessing step, and then fed
into the RNN to generate the caption. Denote z as
the image feature vector, using the same notation
as in standard language modeling, the probablity
p(Y|X, z) is defined as

p(Y|X, z) =
T∏
t=1

p(yt|x≤t, z) =
T∏
t=1

p(yt|ht) .

The only difference with a standard language
model is that at the first time step, we use the im-
age feature vector z to update h1 = H(h0,x1, z).
h0 is set to a zero vector. The hidden states at
other time steps are recursively updated by ht =
H(ht−1,xt), as in standard language modeling.
Note that the image feature vector z is only used
to generate the first word, which works better in
practice than when being used at each time step of
the RNN (Vinyals et al., 2015).

C SGLD Algorithm

We list the SGLD algorithm below for clarity.

Algorithm 1: SGLD
Input: Learning rate schedule {ηt}Tt=1.
Initialize: θ1 ∼ N (0, I) ;
for t = 1, 2, . . . , T do

% Estimate gradient from minibatch Sm

f̃t = ∇Ũt(θ);
% Parameter update

ξt ∼ N (0, ηtI);
θt+1← θt +

ηt
2 f̃t+ ξt;

end



D Experimental Setup

For RNN training, orthogonal initialization is em-
ployed on all recurrent matrices (Saxe et al.,
2014). Non-recurrent weights are initialized from
a uniform distribution in [−0.01, 0.01]. All the
bias terms are initialized to zero. It is observed that
setting a high initial forget gate bias for LSTMs
can give slightly better results (Le et al., 2015).
Hence, the initial forget gate bias is set to 3
throughout the experiments. Word vectors are ini-
tialized with the publicly available word2vec vec-
tors (Mikolov et al., 2013). These vectors have
dimensionality 300 and were trained using a con-
tinuous bag-of-words architecture . Words not
present in the set of pre-trained words are initial-
ized at random. Gradients are clipped if the norm
of the parameter vector exceeds 5 (Sutskever et al.,
2014).

The hyperparameters for the algorithm include
stepsize, minibatch size, thinning interval, num-
ber of burn-in epochs and variance of the Gaus-
sian priors. We explain some hyperparameters that
are unique in pSGLD as follows. RMSprop em-
ploys the same hyperparameter setting as pSGLD.
Throughout the experiments, the dropout rate is
set to 0.5.

Variance of Gaussian Prior The prior distribu-
tions on the weights of RNNs are Gaussian, with
mean 0 and variance σ2. The variance of this
Gaussian distribution determines the prior belief
of how strongly these weights should concentrate
on 0. A larger variance in the prior leads to a wider
range of weight choices, thus higher uncertainty.
We set σ2 to 1 throughout the experiments.

Burn-in To obtain a good initialization for pa-
rameter samples from regions of higher probabil-
ity, we dispose of samples at the beginning of
an MCMC run, prior to collection, this is called
“burn-in”.

Thinning Due to the fact of high autocorrela-
tion time between samples in SG-MCMC meth-
ods, we suggest to thin the Markov chain which
leaves fewer, less correlated samples. As with con-
ventional MCMC, these thinned samples have a
lower autocorrelation time and can help maintain
a higher effective sample size while reducing the
computational burden.

E Details of Classification Datasets

We test SG-MCMC methods on various bench-
mark datasets for sentence classification. Sum-
mary statistics of the datasets are in Table 1. For
datasets without a standard validation set, we ran-
domly select 10% of the training data as the vali-
dation set.

• TREC: This task involves classifying a ques-
tion into 6 types (Li and Roth, 2002).

• MR: Movie reviews with one sentence per re-
view. Classification involves predicting posi-
tive/negative reviews (Pang and Lee, 2005).

• SUBJ: Subjectivity dataset where the task is
to classify a sentence as being subjective or
objective (Pang and Lee, 2004).

• CR: Customer reviews of various products.
This task is to predict positive/negative re-
views (Hu and Liu, 2004).

• MPQA: Opinion polarity detection subtask
of the MPQA dataset (Wiebe et al., 2005).

Table 1: Summary statistics for the datasets after
tokenization. c: number of target classes. l: aver-
age sentence length. N : dataset size. |V |: vocabu-
lary size. Test: Test set size (CV means there was
no standard train/test split and thus 10-fold cross
validation was used.)

Data c l N |V | Test

TREC 6 10 5952 9764 500
MR 2 20 10662 18765 CV
SUBJ 2 23 10000 21322 CV
CR 2 19 3775 5339 CV
MPQA 2 3 10606 6246 CV
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