
Learning Structural Weight Uncertainty for Sequential

Decision-Making

Ruiyi Zhang1 Chunyuan Li1 Changyou Chen2 Lawrence Carin1

1Duke University 2University at Bu↵alo
ryzhang@cs.duke.edu, cl319@duke.edu, cchangyou@gmail.com, lcarin@duke.edu

Abstract

Learning probability distributions on the
weights of neural networks (NNs) has re-
cently proven beneficial in many applica-
tions. Bayesian methods, such as Stein
variational gradient descent (SVGD), o↵er
an elegant framework to reason about NN
model uncertainty. However, by assuming
independent Gaussian priors for the individ-
ual NN weights (as often applied), SVGD
does not impose prior knowledge that there
is often structural information (dependence)
among weights. We propose e�cient poste-
rior learning of structural weight uncertainty,
within an SVGD framework, by employing
matrix variate Gaussian priors on NN pa-
rameters. We further investigate the learned
structural uncertainty in sequential decision-
making problems, including contextual ban-
dits and reinforcement learning. Experi-
ments on several synthetic and real datasets
indicate the superiority of our model, com-
pared with state-of-the-art methods.

1 Introduction

Deep learning has achieved state-of-the-art perfor-
mance on a wide range of tasks, including image clas-
sification [Krizhevsky et al., 2012], language model-
ing [Sutskever et al., 2014], and game playing [Silver
et al., 2016]. One challenge in training deep neu-
ral networks (NNs) is that such models may overfit
to the observed data, yielding over-confident decisions
in learning tasks. This is partially because most NN
learning only seeks a point estimate for the model pa-

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

rameters, failing to quantify parameter uncertainty. A
natural way to ameliorate these problems is to adopt
a Bayesian neural network (BNN) formulation. By
imposing priors on the weights, a BNN utilizes avail-
able data to infer an approximate posterior distribu-
tion on NN parameters [MacKay, 1992]. When mak-
ing subsequent predictions (at test time), one per-
forms model averaging over such learned uncertainty,
e↵ectively yielding a mixture of NN models [Gal and
Ghahramani, 2016, Zhang et al., 2016, Liu and Wang,
2016, Li et al., 2016a, Chen and Zhang, 2017]. BNNs
have shown improved performance on modern achi-
tectures, including convolutional and recurrent net-
works [Li et al., 2016b, Gan et al., 2017, Fortunato
et al., 2017].

For computational convenience, traditional BNN
learning typically makes two assumptions on the
weight distributions: independent isotropic Gaussian
distributions as priors, and fully factorized Gaussian
proposals as posterior approximation when adopting
variational inference [Hernández-Lobato and Adams,
2015, Blundell et al., 2015, Liu and Wang, 2016, Feng
et al., 2018, Pu et al., 2017b]. By examining this
procedure, we note two limitations: (i) the indepen-
dent Gaussian priors can ignore the anticipated struc-
tural information between the weights, and (ii) the
factorized Gaussian posteriors can lead to unreason-
able approximation errors and underestimate model
uncertainty (underestimate variances).

Recent attempts have been made to overcome these
two issues. For example, [Louizos and Welling, 2016,
Sun et al., 2017] introduced structural priors with the
matrix variate Gaussian (MVG) distribution [Gupta
and Nagar, 1999] to impose dependency between
weights within each layer of a BNN. Further, non-
parametric variational inference methods, e.g., Stein
variational gradient descent (SVGD) [Liu and Wang,
2016], iteratively transport a set of particles to approx-
imate the target posterior distribution (without mak-
ing explicit assumptions about the form of the pos-
terior, avoiding the aforementioned factorization as-

Learning Structural Weight Uncertainty for Sequential Decision-Making

sumption). SVGD represents the posterior approxi-
mately in terms of a set of particles (samples), and is
endowed with guarantees on the approximation accu-
racy when the number of particles is exactly infinity
[Liu, 2017]. However, since the updates within SVGD
learning involve kernel computation in the parameter
space of interest, the algorithm can be computationally
expensive in a high-dimensional space. This becomes
even worse in the case of structural priors, where a
large amount of additional parameters are introduced,
rendering SVGD ine�cient when directly applied for
posterior inference.

We propose an e�cient learning scheme for accurate
posterior approximation of NN weights, adopting the
MVG structural prior. We provide a new perspec-
tive to unify previous structural weight uncertainty
methods [Louizos and Welling, 2016, Sun et al., 2017]
via the Householder flow [Tomczak and Welling, 2016].
This perspective allows SVGD to approximate a target
structural distribution in a lower-dimensional space,
and thus is more e�cient in inference. We call the
proposed algorithm Structural Stein Variational Gra-
dient Descent (S2VGD).

We investigate the use of our structural-weight-
uncertainty framework for learning policies in sequen-
tial decision problems, including contextual bandits
and reinforcement learning. In these models, uncer-
tainty is particularly important because greater uncer-
tainty on the weights typically introduces more vari-
ability into a decision made by a policy network [Kolter
and Ng, 2009], naturally leading the policy to explore.
As more data are observed, the uncertainty decreases,
allowing the decisions made by a policy network to
become more deterministic as the environment is bet-
ter understood (exploitation when the policy becomes
more confident). In all these models, structural weight
uncertainty is inferred by our proposed S2VGD.

We conduct several experiments, first demonstrating
that S2VGD yields e↵ective performance on classic
classification/regression tasks. We then focus our ex-
periments on the motivating applications, sequential
decision problems, for which accounting for NN weight
uncertainty is believed to be particularly beneficial. In
these applications the proposed method demonstrates
particular empirical value, while also being computa-
tionally practical. The results show that structural
weight uncertainty gives better expressive power to de-
scribe uncertainty driving better exploration.

2 Preliminaries

2.1 Matrix variate Gaussian distributions

The matrix variate Gaussian (MVG) distribution
[Gupta and Nagar, 1999] has three parameters, de-
scribing the probability of a random matrix W 2

R`1⇥`2 :
p(W) , MN (W;M,U,V)

=

exp

✓
1
2
tr[V�1(W �M)>U�1(W �M)]

◆

(2⇡)`1`2/2|V|`1/2|U|`2/2

(1)

where M 2 R`1⇥`2 is the mean of the distribution.
U 2 R`1⇥`1 and V 2 R`2⇥`2 encode covariance infor-
mation for the rows and columns of W respectively.
The MVG is closely related to the multivariate Gaus-
sian distribution.

Lemma 1 (Golub and Van Loan [2012]). Assume W
follows the MVG distribution in (1), then

vec(W) ⇠ N (vec(M),V ⌦U) (2)

where vec(M) is the vectorization of M by stacking the
columns of M, and ⌦ denotes the standard Kronecker
product [Golub and Van Loan, 2012].

Furthermore, a linear transformation of an MVG dis-
tribution is still an MVG distribution.

Lemma 2 (Golub and Van Loan [2012]). Assume W
follows the MVG distribution in (1), A 2 R`2⇥`1 ,C 2
R`2⇥`1 , then,

B , AW ⇠MN (B;AM,AUA>,V)

B , WC ⇠MN (B;MC,U,C>VC)
(3)

MVG priors for BNNs For classification and re-
gression tasks on data D = {d1, · · · ,dN}, where
di = {xi,yi}, with input xi and output yi, an L-layer
NN parameterizes the mapping {g`}

L
`=1, defining the

prediction of yi for xi as:

ŷi = f(xi) = gL � gL�1 � · · · � g0(xi), 8i. (4)

where � represents function composition, i.e., A � B

means A is evaluated on the output of B. Each
layer g` represents a nonlinear transformation. For
example, with the Rectified Linear Unit (ReLU) ac-
tivation function [Nair and Hinton, 2010], g`(xi) =
ReLU(W>

` xi + b`), where ReLU(x) , max (0, x), W`

is the weight matrix for the `th-layer, and b` the cor-
responding bias term.

The MVG can be adopted as a prior for the weight
matrix in each layer, to impose the prior belief that
there are intra-layer weight correlations,

W` ⇠MN (W;0,U`,V`), (5)

where the covariances U`,V` have components drawn
independently from Inv-Gamma(a0, b0). The param-
eters are ✓ , {W`, logU`, logV`}, and the above
distributions represent the prior p(✓). Our goal
with BNNs is to learn layer-wise structured weight

Ruiyi Zhang
1

Chunyuan Li
1

Changyou Chen
2

Lawrence Carin
1

uncertainty, described by the posterior distribution
p(✓|D) / p(✓)p(D|✓), represented below as p for sim-
plicity. When U = �I and V = �I, we reduce to BNNs
with independent isotropic Gaussian priors [Blundell
et al., 2015].

2.2 Stein Variational Gradient Descent

SVGD considers a set of particles {✓i}
M
i=1 drawn from

distribution q, and transforms them to better match
the target distribution p, by update:

✓i ✓i + ✏�(✓i),

� = argmax
�2F

⇢
@

@✏
KL(q[✏�]||p)

�
,

(6)

where q[✏�] is the updated empirical distribution, with
✏ as the step size, and � as a function perturbation di-
rection chosen to minimize the KL divergence between
q and p. SVGD considers F as the unit ball of a vector-
valued reproducing kernel Hilbert space (RKHS) H

associated with a kernel (✓,✓0). The RBF kernel is
usually used as default. It has been shown [Liu and
Wang, 2016] that:

� @
@✏

KL(q[✏�]kp)|✏=0 = E✓⇠q[�p�(✓)], (7)

with �p�(✓) , r✓ log p(✓|D)>�(✓) +r✓ · �(✓),

where r✓ log p(✓) denotes the derivative of the log-
density of p; �p is the Stein operator. Assuming that
the update function �(✓) is in a RKHS with kernel
(·, ·), it has been shown in [Liu and Wang, 2016] that
(7) is maximized with:

�(✓) = E✓⇠q[(✓,✓
0)r✓ log p(✓|D) +r✓(✓,✓

0)]. (8)

The expectation E✓⇠q[·] can be approximated by an
empirical averaging of particles {✓i}

M
i=1, resulting in a

practical SVGD procedure as:

✓i ✓i +
✏

M

MX

j=1

h
(✓j ,✓i)r✓j log p(✓j |D)

+r✓j(✓j ,✓i)
i
.

(9)

The first term to the right of the summation in (9)
drives the particles ✓i towards the high probability re-
gions of p, with information sharing across similar par-
ticles. The second term repels the particles away from
each other, encouraging coverage of the entire distribu-
tion. SVGD applies the updates in (9) repeatedly, and
the samples move closer to the target distribution p in
each iteration. When using state-of-the-art stochas-
tic gradient-based algorithms, e.g., RMSProp [Hinton
et al., 2012] or Adam [Kingma and Ba, 2015], SVGD
becomes a highly e�cient and scalable Bayesian infer-
ence method.

Computational Issues Applying SVGD with
structured distributions for NNs has many challenges.
For a weight matrix W of size `1 ⇥ `2, the number
of parameters in U and V are `21 and `22, respectively.
Hence, the total number of parameters ✓ needed to
describe the distribution is `1`2 + `21 + `22, compared
to `1`2 + 1 in traditional BNNs that employ isotropic
Gaussian priors and factorization.

The increase of parameter dimension by `21 + `22 � 1
leads to significant computational overhead. The prob-
lem becomes even more severe in two aspects in cal-
culating the kernels: (i) The computation increases
quadratically by M(M � 1)(`21 + `

2
2� 1)/2, (ii) the ap-

proximation to the repelling term in (9) using limited
particles can be inaccurate in high dimensions. There-
fore, it is desirable to transform the MVG distribution
to a lower-dimensional representation.

3 SVGD & Imposition of Structure

3.1 Reparameterization of the MVG
Since the covariance matrices U and V are pos-
itive definite, we can decompose them as U =
P⇤1⇤1P>,V = Q⇤2⇤2Q>, where P and Q are the
corresponding orthogonal matrices, ⇤1 and ⇤2 are di-
agonal matrices with positive diagonal elements. Ac-
cording to Lemma 2, we show the following reparam-
eterization of MVG:

Proposition 3. For a random matrix C following an
independent Gaussian distribution:

vec(C) ⇠ N (·, P>⇤�1
1 M⇤�1

2 Q, I), (10)

the corresponding full-covariance MVG W in (1) can
be reparameterized as W = P⇤1C⇤2Q>.

The proof is in Section A of the Supplementary Mate-
rial. Therefore, W drawn from MVG can be decom-
posed as the linear product of five random matrices:

• C as a standard weight matrix with an indepen-
dent Gaussian distribution.

• ⇤1 and ⇤2 as the diagonal matrices, encoding the
structural information within each row and col-
umn, respectively.

• P and Q as orthogonal matrices, which character-
ize the structural information of weights between
rows and columns, respectively.

3.2 MVG as Householder Flows

Based on Proposition 3, we propose a layer decompo-
sition: the one-layer weight matrix W with an MVG
prior can be decomposed into a linear product of five
matrices, as illustrated in Figure 1(a). Our layer de-
composition provides an interesting interpretation for
the original MVG layer: it is equivalent to several

Learning Structural Weight Uncertainty for Sequential Decision-Making

C⇤1 ⇤2PW

⇥ ⇥ ⇥ ⇥

Q

(a) Layer Decomposition

QP or

· · ·⇥ ⇥⇥⇥

H1 H2 HK�1 HK

(b) Householder Flow
Figure 1: Illustration of the two proposed techniques to
reduce parameter size in learning the distribution of W:
(a) decomposition ofW as a linear product of five matrices,
and (b) approximation of P or Q as a linear product of K
Householder matrices. Note that each rectangle indicates
a matrix, “⇥” indicates the matrix product, and H in (b)
is constructed using (12).

within-layer transformations. The representations im-
posed in the standard weight matrix C are rotated by
P and Q, and re-weighted by ⇤1 and ⇤2.

Note that the layer decomposition maintains similar
computational complexity as the original MVG layer.
To reduce the computation bottleneck in the layer de-
composition, we further propose to represent P and Q
using Householder flows [Tomczak and Welling, 2016].
Formally, a Householder transformation is a linear
transformation that describes a reflection about a hy-
perplane containing the origin. Householder flow is a
series of Householder transformations.

Lemma 4 ([Sun and Bischof, 1995]). Any orthogonal
matrix M of degree K can be expressed as a House-
holder flow, i.e., a product of exactly K nontrivial
Householder matrices., i.e.,

M = HKHK�1 · · ·H1. (11)

Importantly, each Householder matrix H is con-
structed from a Householder vector v (which is or-
thogonal to the hyperplane):

H = I� 2
vv>

kvk2
. (12)

According to Lemma 4, P and Q can be represented as

a product of Householder matrices {H(p)
k } and {H(q)

k }:

P = H(p)
K H(p)

K�1 · · ·H(p)
1

Q = H(q)
K H(q)

K�1 · · ·H(q)
1

H(p)
k = I� 2v(p)

k v(p)>
k /

⇣
v(p)>

k v(p)
k

⌘

H(q)
k = I� 2v(q)

k v(q)>
k /

⇣
v(q)>

k v(q)
k

⌘
,

(13)

where v(p)
k and v(q)

k are the kth Householder vector for
P and Q, respectively. This is illustrated in Figure 1

(b). Note that the degree K min{`1, `2}, with proof
in Section B of Supplementary Material. In practice,
K is a trade-o↵ hyperparameter, balancing the approx-
imation accuracy and computation trade-o↵.

Since Householder flows allow one to represent P or
Q as K Householder vectors, the parameter sizes re-
duce from `21 and `22 to K`1 and K`2. Overall, we
can model W with structured weight priors using
only (K + 1)(`1 + `2) + `1`2 parameters. Therefore,
we can e�ciently capture the structure information
with only a slight increase of computational cost (i.e.,
(K + 1)(`1 + `2)).

Interestingly, our method provides a unifying perspec-
tive of previous methods on learning structured weight
uncertainty. In terms of prior distributions, when
K = 0 (i.e., P = Q = I), our reparameterization
reduces to [Louizos and Welling, 2016]. When K = 1,
and ⇤1 = ⇤2 = I, our reparameterization reduces to
[Sun et al., 2017]. In terms of posterior learning meth-
ods, when P = Q = ⇤1 = ⇤2 = I and M > 1, S2VGD
reduces to SVGD; when M = 1, it reduces to learning
an MAP solution.

3.3 Structural BNNs Revisited
We can leverage the layer decomposition and House-
holder flow above to construct an equivalent BNN by
approximating the `th MVG layer in (5) with standard
Gaussian weight matrices:

p(C|�) = N (C`;0,�) ,

p(v(p)
k` |�) = N

⇣
v(p)

k` ;0,�I
⌘
,

p(v(q)
k` |�) = N

⇣
v(q)

k` ;0,�I
⌘
,

p(⇤(1)
|) = N

⇣
⇤(1)

` ;0, I
⌘

p(⇤(2)
|) = N

⇣
⇤(2)

` ;0, I
⌘
,

�,�, ⇠ Inv-Gamma(·; a`, b`).

(14)

The forms of the likelihood for the last layer are defined
according to the specific applications. For regression
problems on real-valued response y:

y|x,WL ⇠ N (y; f(x,WL), �I)

� ⇠ Inv-Gamma(·; aL, bL) ,
(15)

with f(·) a neural network defined in (4). For classifi-
cation problems on discrete labels y:

y|x,WL ⇠ Categorical(y; Softmax(f(x,WL)). (16)

Note that WL can follow the same proposed tech-
niques to reduce parameter size. Therefore, standard
SVGD algorithms can be applied to sample from the
posterior distribution of each model parameter. Intu-
itively, in SVGD the kernel function governs the in-
teractions between particles, which employs this infor-
mation to accelerate convergence and provide better

Ruiyi Zhang
1

Chunyuan Li
1

Changyou Chen
2

Lawrence Carin
1

performance. Similarly, the Householder flow, encod-
ing structural information, controls the interactions
between weights in each particle.

4 Sequential Decision-Making

A principal motivation for the proposed S2VGD frame-
work is sequential decision-making, including contex-
tual multi-arm bandits (CMABs) and Markov deci-
sion processes (MDPs). A challenge in sequential
decision-making in the face of uncertainty is the ex-
ploration/exploitation trade-o↵: the trade-o↵ between
either taking actions that are most rewarding accord-
ing to the current knowledge, or taking exploratory ac-
tions, which may be less immediately rewarding, but
may lead to better-informed decisions in the future. In
a Bayesian setting, the exploration/exploration trade-
o↵ is naturally addressed by imposing uncertainty into
the parameters of a policy model.

4.1 CMABs and Stein Thompson Sampling

CMABs model stochastic, discrete-time and finite
action-state space control problems. A CMAB is for-
mally defined as a tuple C = hS,A, Ps, Pr, ri, where
S is the state/context space, A the action/arm space,
r 2 R is the reward, Ps and Pr are the unknown en-
vironment distributions to draw the context and re-
ward, respectively. At each time step t, the agent (i)
first observes a context st 2 S, drawn i.i.d. over time
from Ps; then (ii) chooses an action at at 2 A and
observes a stochastic reward rt(at, st), which is drawn
i.i.d. over time from Pr(·|at, st), conditioned on the
current context and action. The agent makes deci-
sions via a policy ⇡(a|s) that maps each context to
a distribution over actions, yielding the probability of
choosing action a in state s. The goal in CMABs is to
learn a policy to maximize the expected total reward
in T interactions: J(⇡) = EPs,⇡,Pr

PT
t=1 rt.

We represent the policy using a ✓-parameterized neu-
ral network ⇡✓(a|s), where MVG priors p(✓) are em-
ployed on the weights. At each time t, given the past
observations Dt , {d}

t
j=1, where dj = (sj ,aj , rj), the

posterior distribution of ✓t is updated as p(✓t|Dt) /Qt
j=1 p(dj |✓)p(✓).

Thompson sampling [Thompson, 1933] is a popular
method to solve CMABs [Li et al., 2011]. It approxi-
mates the posterior p(✓|Dt) in an online manner. At
each step, Thompson sampling (i) first draws a set
of parameter samples, then (ii) picks the action by
maximizing the expected reward over current step,
i.e., at = argmaxa Er⇠Pr(·|a,st;✓t)rt, (iii) collects data
samples after observing the reward rt, and (iv) up-
dates posterior of the policy. We apply the proposed
S2VGD for the updates in the final step, and call the

new procedure Stein Thompson sampling, summarized
in Algorithm 1.

Note our Stein Thompson sampling is a general scheme
for exploration/exploitation balance in CMABs. The
techniques in [Russo et al., 2017, Kawale et al., 2015]
can be adapted in this framework; we leave this for
future work.

Algorithm 1 Stein Thompson Sampling

Require: D = ;; initialize particles ⇥0 = {✓i}
M
i=1;

1: for t = 0, 1, 2, . . . , T do
2: Receive context st ⇠ Ps;
3: Draw a particle ✓̂t from ⇥t;
4: Select at = argmaxa Er⇠Pr(·|a,st;✓̂t)

rt;
5: Observe reward rt ⇠ Pr, by performing at;
6: Collect observation: Dt+1 = Dt [(st,at, rt);
7: Update ⇥t+1, according to SVGD in (9);
8: end for

4.2 MDPs and Stein Policy Gradient

An MDP is a sequential decision-making procedure
in a Markovian dynamical system. It can be seen
as an extension of the CMAB, by replacing the con-
text with the notion of a system state, that may dy-
namically change according to the performed actions
and previous state. Formally, an MDP defines a tuple
M = hS,A, Ps, Pr, r, �i, which is similar to a CMAB C

except that (i) the next state st+1 is now conditioned
on state st and action at, i.e., st+1 ⇠ Ps(·|st,at);
and (ii) a discount factor 0 < � < 1 for the re-
ward is considered. The goal is to find a policy
⇡(a|s) to maximize the discounted expected reward:

J(⇡) = EPs,⇡,Pr

PT
t=1 �

trt.

Policy gradient [Sutton and Barto, 1998] is a family
of reinforcement learning methods that solves MDPs
by iteratively updating the parameters ✓ of the policy
to maximize J(✓) , J(⇡✓(a|s)). Instead of search-
ing for a single policy parameterized by ✓, we consider
adopting an MVG prior for p(✓), and learning its vari-
ational posterior distribution q(✓) using S2VGD. Fol-
lowing [Liu et al., 2017], the objective function is mod-
ified as:

max
q

{Eq(✓)[J(✓)]� ↵KL(qkp)}, (17)

where ↵ 2 [0,+1) is the temperature hyper-
parameter to balance exploitation and exploration in
the policy. The optimal distribution is shown to have
a simple closed form [Liu et al., 2017]:

q(✓) / exp

✓
1

↵
J(✓)

◆
p(✓). (18)

Learning Structural Weight Uncertainty for Sequential Decision-Making

We iteratively approximate the target distribution as:

4✓i =
✏

M

MX

j=1

[r✓j

✓
1

↵
J(✓j) + log p(✓j)

◆
(✓i,✓j)

+r✓j(✓j ,✓i)],
(19)

where J(✓) can be approximated with REIN-
FORCE [Williams, 1992] or advantage actor
critic [Schulman et al., 2016].

We note two advantages of S2VGD in sequential
decision-making: (i) the structural priors can char-
acterize the flexible weight uncertainty, thus providing
better exploration-exploitation when learning the poli-
cies; (ii) the e�cient approximation scheme provides
accurate representation of the true posterior while
maintaining similar online-processing speed.

5 Experiments

To demonstrate the e↵ectiveness of our S2VGD, we
first conduct experiments on the standard regression
and classification tasks, with real datasets (two syn-
thetic experiments on classification and regression are
given in the Supplementary Material). The superiority
of S2VGD is further demonstrated in the experiments
on contextual bandits and reinforcement learning.

We compare S2VGD with related Bayesian learning al-
gorithms, including VMG [Louizos and Welling, 2016],
PBP MV [Sun et al., 2017], and SVGD [Liu and Wang,
2016]. The RMSprop optimizer is employed if there
is no specific declaration. For SVGD-based methods,
we use a RBF kernel (✓,✓0) = exp(�k✓ � ✓0

k
2
2/h),

with the bandwidth set to h = med2/ logM . [Oates
et al., 2016, Gorham and Mackey, 2017] Here med is
the median of the pairwise distance between parti-
cles. The hyper-parameters a` = 1, b` = 0.1. The
experimental codes of this paper are available at:
https : //github.com/zhangry868/S2VGD.

We first study the role of hyperparameters in S2VGD:
the number of Householder transformations K and the
number of particlesM . This is investigated by a classi-
fication task from [Liu and Wang, 2016] on the Cover-
type dataset with 581,012 data points and 54 features.

Figure 2: Impact of K and M .

We perform 5 runs for each setting and report the
mean of testing accuracy in Figure 2. As expected,

increasing M or K improves the performance, as they
lead to a more accurate approximation. Interestingly,
when M is small, increasing K gives significant im-
provement. Furthermore, when M is large, the change
of K yields similar performance. Therefore, we set
K = 1 and M = 20 unless otherwise specified.

5.1 Regression

We use a single-layer BNN for regression tasks. Fol-
lowing [Li et al., 2015], 10 UCI public datasets are con-
sidered: 100 hidden units for 2 large datasets (Protein
and YearPredict), and 50 hidden units for the other 8
small datasets. We repeat the experiments 20 times for
all datasets except for Protein and YearPredict, which
we repeat 5 times and once, respectively, for computa-
tion considerations [Sun et al., 2017]. The batch size
for the two large datasets is set to 1000, while it is 100
for the small datasets. The datasets are randomly split
into 90% training and 10% testing. We adopt the root
mean squared error (RMSE) and test log-likelihood as
the evaluation criteria.

The experimental results are shown in Table 1, from
which we observe that i) weight structure informa-
tion is useful (SVGD is the only method without
structure, and it yields inferior performance); ii) al-
gorithms with non-parametric assumptions, i.e., the
Stein-based methods, perform better; and iii) when
combined with structure information, our method
achieves state-of-the-art results.

5.2 Classification

We perform the classification tasks on the standard
MNIST dataset, which consists of handwritten digits
of size 28⇥ 28, with 50,000 images for training and
10,000 for testing. A two-layer model 784-X-X-10 with
ReLU activation function is used, and X is the number
of hidden units for each layer. The training epoch is
set to 100. The test errors for network (X-X) sizes 400-
400 and 800-800 are reported in Table 2. We observe
that the Bayesian methods generally perform better
than their optimization counterparts. The proposed
S2VGD improves SVGD by a significant margin. In-
creasing K also improves performance, demonstrating
the advantages of incorporating structured weight un-
certainty into the model. See [Li et al., 2016a, Louizos
and Welling, 2016, Blundell et al., 2015] for details on
the other methods with which we compare.

We wish to verify that the performance gain of S2VGD
is due to the special structural design of the network
architecture, rather than the increasing number of
model parameters. This is demonstrated by training
a NN with 415-415 hidden units using SVGD, which
yields test error 1.49%. It has slightly more parameters
than our 400-400 network trained by S2VGD (K=10),
but worse performance.

Ruiyi Zhang
1

Chunyuan Li
1

Changyou Chen
2

Lawrence Carin
1

Table 1: Averaged predictions with standard deviations in terms of RMSE and log-likelihood on test sets.
Test RMSE Test Log likelihood

Dataset VMG PBP MV SVGD S2VGD VMG PBP MV SVGD S2VGD

Boston 2.70 ± 0.13 2.76 ± 0.43 2.96±0.10 2.56 ± 0.33 -2.46 ± 0.09 -3.01 ± 0.26 -2.50±0.03 �2.43 ± 0.10
Energy 0.54 ± 0.02 0.48 ± 0.04 1.37±0.05 0.38 ± 0.02 -1.06 ± 0.03 -2.37 ± 0.03 -1.77±0.02 �0.55 ± 0.04
Concrete 4.89 ± 0.12 4.66 ± 0.44 5.32±0.10 4.25 ± 0.37 -3.01 ± 0.03 -3.22 ± 0.05 -3.08±0.02 �2.90 ± 0.07
Kin8nm 0.08 ± 0.00 0.08 ± 0.00 0.09±0.00 0.07 ± 0.00 1.10 ± 0.01 0.78 ± 0.02 0.98±0.01 1.15 ± 0.01
Naval 0.00 ± 0.00 0.00 ± 0.00 0.00±0.00 0.00 ± 0.00 2.46 ± 0.00 4.37 ± 0.17 4.09±0.01 4.79 ± 0.05
CCPP 4.04 ± 0.04 3.91 ± 0.09 4.03±0.03 3.84 ± 0.08 -2.82 ± 0.01 -2.81 ± 0.02 -2.82±0.01 �2.77 ± 0.02

Winequality 0.61 ± 0.04 0.61 ± 0.02 0.61±0.01 0.59 ± 0.02 -0.95 ± 0.01 -0.99 ± 0.07 -0.93±0.01 �0.90 ± 0.03
Yacht 0.48 ± 0.18 0.53 ± 0.14 0.86±0.05 0.47 ± 0.11 -1.30 ± 0.02 -1.67 ± 0.24 -1.23±0.04 �0.81 ± 0.14
Protein 4.13 ± 0.02 4.38 ± 0.01 4.61±0.01 4.15 ± 0.04 �2.84 ± 0.00 -2.91 ± 0.03 -2.95±0.00 -2.84 ± 0.01

YearPredict 8.78 ± NA 8.84 ± NA 8.68 ± NA 8.73 ± NA -3.59 ± NA -3.58±NA -3.62 ± NA �3.57 ± NA

(a) Simulation results on Mushroom (b) New Article Recommendation (c) Particle Size on Yahoo!Today

Figure 3: Experimental results of Contextual Bandits

Table 2: Classification error of FNN on MNIST.

Method
Test Error

400-400 800-800
S2VGD (K=10) 1.36% 1.30%
S2VGD (K=1) 1.43% 1.39%
SVGD 1.53% 1.47%
SGLD 1.64% 1.41%
RMSprop 1.59% 1.43%
RMSspectral 1.65% 1.56%
SGD 1.72% 1.47%
VMG, variational dropout 1.15% -
BPB, Gaussian 1.82% 1.99%
BPB, scale mixture 1.32% 1.34%
SGD, dropout 1.51% 1.33%

5.3 Contextual Bandits

Simulation We first simulate a contextual-bandit
problem with the UCI mushrooms dataset. Following
[Blundell et al., 2015], the provided features of each
mushroom are regarded as the context. A reward of
5 is given when an agent eats an edible mushroom.
Otherwise, if a mushroom is poisonous and the agent
eats it, a reward of -10 or 5 will be received, both
with probability 0.5; if the agent decides not to eat the
mushroom, it receives a reward of 0. We use a two-
layer BNN with ReLU and 50 hidden units to represent
the policy. We compared our method with a standard
baseline, "-greedy policy with " = 0% (pure greedy),
1%, 3%, respectively [Sutton and Barto, 1998].

We evaluate the performance of di↵erent algorithm by
cumulative regret [Sutton and Barto, 1998], a measure
of the loss caused by playing suboptimal bandit arms.
The results are plotted in Figure 3(a). Thompson sam-
pling with 3 di↵erent strategies to update policy are
considered: S2VGD, SVGD and VMG. S2VGD shows
lower regret at the beginning of learning than SVGD,
and the lowest final cumulative regret among all meth-
ods. We hypothesize that our method captures the
internal weight correlation, and the structural uncer-
tainty can e↵ectively help the agent learn to make less
mistakes in exploration with less observations.

News Article Recommendation We consider
personalized news article recommendation on Yahoo!
[Li et al., 2010], where each time a user visits the por-
tal, a news article from a dynamic pool of candidates
is recommended based on the user’s profile (context).
The dataset contains 45,811,883 user visits to the To-
day Module in a 10-day period in May 2009. For each
visit, both the user and each of the 20 candidate ar-
ticles are associated with a feature vector of 6 dimen-
sions [Li et al., 2010].

The goal is to recommend an article to a user based on
its behavior, or, formally, maximize the total number
of clicks on the recommended articles. The procedure
is regraded as a CMAB problem, where articles are
treated as arms. The reward is defined to be 1 if the
article is clicked on and 0 otherwise. A one-layer NN
with ReLU and 50 hidden units is used as the policy

Learning Structural Weight Uncertainty for Sequential Decision-Making

network. The classic LinUCB [Li et al., 2010] is also
used as the baseline. The performance is evaluated by
an unbiased o✏ine evaluation protocol: the average
normalized accumulated click-through-rate (CTR) in
every 20000 observations [Li et al., 2010, 2011]. The
normalized CTRs are plotted in Figure 3(b). It is clear
that S2VGD consistently outperforms other methods.
The fact that S2VGD and VMG perform better than
SVGD and the baseline LinUCB indicates that struc-
tural information helps algorithms to better balance
exploration and exploitation.

To further verify the influence of the particle sizeM on
the sequential decision-making, we vary the M from 1
to 50 on the-first-day data. All algorithms are repeated
10 times and their mean performances are plotted in
Figure 3(c). We observe that the CTR keeps improv-
ing when M becomes larger. S2VGD dominates the
performance of SVGD with much higher CTRs, the
gap becomes larger as M increases. Since larger M
typically leads to more accurate posterior estimation of
the policy, indicating again that the accurately learned
structural uncertainty are beneficial for CMABs.

5.4 Reinforcement Learning

We apply our S2VGD to policy gradient learning. All
experiments are conducted with the OpenAI rllab
toolkit [Duan et al., 2016]. Three classical continuous
control tasks are considered: Cartpole Swing-Up, Dou-
ble Pendulum, and Cartpole. Following the settings in
[Liu et al., 2017, Houthooft et al., 2016], the policy is
parameterized as a two-layer (25-10 hidden units) neu-
ral network with tanh as the activation function. The
maximal length of horizon is set to 500. SVGD and
S2VGD use a sample size of 10000 for policy gradient
estimation, and M = 16. For the easy task, Cartpole,
all agents are trained for 100 episodes. For the two
complex tasks, Cartpole Swing-Up and Double Pen-
dulum, all agents are trained up to 1000 episodes. We
consider two di↵erent methods to estimate the gra-
dients: REINFORCE [Williams, 1992] and advantage
actor critic (A2C) [Schulman et al., 2016]

Figure 4 plots the mean (dark curves) and standard
derivation (light areas) of discounted rewards over 5
runs. In all tasks and value-estimation setups, S2VGD
converges faster than SVGD and finally converges to
higher average rewards. The results are even com-
parable to [Houthooft et al., 2016], in which a subtle
reward mechanism is incorporated to encourage explo-
ration. It demonstrates that simply adding structural
information on policy networks using S2VGD improves
the agent’s exploration ability. We also add a baseline
method called SVGD* that applies SVGD to train a
network of similar size (25-16 hidden units) with the
one reparameterized by S2VGD (K=4). The fact that

Figure 4: Learning curves by S2VGD and SVGD with

REINFORCE (left) and A2C (right).

S2VGD (K=4) converges better than SVGD* demon-
strates that our structural uncertainty is key to excel-
lent performance.

6 Conclusions

We have proposed S2VGD, an e�cient Bayesian pos-
terior learning scheme for the weights of BNNs with
structural MVG priors. To achieve this, we derive a
new reparametrization for the MVG to unify previ-
ous structural priors, and adopt the SVGD algorithm
for accurate posterior learning. By transforming the
MVG into a lower-dimensional representation, S2VGD
avoids computation of related kernel matrices in high-
dimensional space. The e↵ectiveness of our framework
is validated on several real-world tasks, including re-
gression, classification, contextual bandits and rein-
forcement learning. Extensive experimental results
demonstrate its superiority relative to related algo-
rithms.

Our empirical results on sequential decision-making
suggest the benefits of including inter-weight struc-
ture within the model, when computing policy uncer-
tainty for online decision-making in an uncertain envi-
ronments. More sophisticated methods for leveraging
uncertainty for exploration/exploration balance may
be a promising direction for future work. For exam-
ple, explicitly encouraging exploration using learned
structural uncertainty [Houthooft et al., 2016].

Ruiyi Zhang
1

Chunyuan Li
1

Changyou Chen
2

Lawrence Carin
1

Acknowledgements We acknowledge Qiang Liu
and Yang Liu for making their code public. We thank
Chenyang Tao for proofreading. This research was
supported in part by ARO, DARPA, DOE, NGA,
ONR and NSF.

References

Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. In ICML, 2015.

Changyou Chen and Ruiyi Zhang. Particle optimiza-
tion in stochastic gradient mcmc. arXiv:1711.10927,
2017.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman,
and Pieter Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. In ICML,
2016.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to
draw samples with amortized stein variational gra-
dient descent. 2018.

Meire Fortunato, Charles Blundell, and Oriol Vinyals.
Bayesian recurrent neural networks. arXiv preprint
arXiv:1704.02798, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In ICML, 2016.

Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu,
Qinliang Su, and Lawrence Carin. Scalable bayesian
learning of recurrent neural networks for language
modeling. ACL, 2017.

Soumya Ghosh, Francesco Maria Delle Fave, and
Jonathan Yedidia. Assumed density filtering meth-
ods for learning bayesian neural networks. In AAAI,
2016.

Gene H Golub and Charles F Van Loan. Matrix Com-
putations. 2012.

Jackson Gorham and Lester Mackey. Measuring sam-
ple quality with kernels. arXiv:1703.01717, 2017.

Arjun K Gupta and Daya K Nagar. Matrix Variate
Distributions. 1999.

José Miguel Hernández-Lobato and Ryan Adams.
Probabilistic backpropagation for scalable learning
of bayesian neural networks. In ICML, 2015.

Geo↵rey E Hinton, Nitish Srivastava, and Kevin Swer-
sky. Rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. Neural Networks for
Machine Learning, Coursera, 2012.

Rein Houthooft, Xi Chen, Yan Duan, John Schul-
man, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In
NIPS, 2016.

Jaya Kawale, Hung H Bui, Branislav Kveton, Long
Tran-Thanh, and Sanjay Chawla. E�cient thomp-
son sampling for online matrix-factorization recom-
mendation. In NIPS, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR, 2015.

J Zico Kolter and Andrew Y Ng. Near-bayesian explo-
ration in polynomial time. In ICML, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

Chunyuan Li, Changyou Chen, David E Carlson, and
Lawrence Carin. Preconditioned stochastic gradi-
ent langevin dynamics for deep neural networks. In
AAAI, 2016a.

Chunyuan Li, Andrew Stevens, Changyou Chen,
Yunchen Pu, Zhe Gan, and Lawrence Carin. Learn-
ing weight uncertainty with stochastic gradient
mcmc for shape classification. In CVPR, 2016b.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In WWW, 2010.

Lihong Li, Wei Chu, John Langford, and Xuanhui
Wang. Unbiased o✏ine evaluation of contextual-
bandit-based news article recommendation algo-
rithms. In WSDM, 2011.

Yingzhen Li, José Miguel Hernández-Lobato, and
Richard E Turner. Stochastic expectation propa-
gation. In NIPS, 2015.

Qiang Liu. Stein variational gradient descent as gra-
dient flow. In NIPS, 2017.

Qiang Liu and Dilin Wang. Stein variational gradi-
ent descent: A general purpose bayesian inference
algorithm. In NIPS, 2016.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian
Peng. Stein variational policy gradient. In UAI,
2017.

Christos Louizos and Max Welling. Structured and
e�cient variational deep learning with matrix gaus-
sian posteriors. In NIPS, 2016.

David JC MacKay. A practical bayesian framework
for backpropagation networks. Neural Computation,
1992.

Vinod Nair and Geo↵rey E Hinton. Rectified linear
units improve restricted boltzmann machines. In
ICML, 2010.

Chris J Oates, Jon Cockayne, François-Xavier Briol,
and Mark Girolami. Convergence rates for
a class of estimators based on stein’s identity.
arXiv:1603.03220, 2016.

Learning Structural Weight Uncertainty for Sequential Decision-Making

Yunchen Pu, Liqun Chen, Shuyang Dai, Weiyao Wang,
Chunyuan Li, and Lawrence Carin. Symmetric vari-
ational autoencoder and connections to adversarial
learning. 2017a.

Yunchen Pu, Zhe Gan, Ricardo Henao, Chunyuan Li,
Shaobo Han, and Lawrence Carin. Stein variational
autoencoder. 2017b.

Daniel Russo, David Tse, and Benjamin Van Roy.
Time-sensitive bandit learning and satisficing
thompson sampling. arXiv:1704.09028, 2017.

John Schulman, Philipp Moritz, Sergey Levine,
Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized
advantage estimation. In ICLR, 2016.

David Silver, Aja Huang, et al. Mastering the game
of go with deep neural networks and tree search.
Nature, 2016.

Shengyang Sun, Changyou Chen, and Lawrence Carin.
Learning structured weight uncertainty in bayesian
neural networks. In AISTATS, 2017.

Xiaobai Sun and Christian Bischof. A basis-kernel rep-
resentation of orthogonal matrices. SIAM Journal
on Matrix Analysis and Applications, 1995.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks.
In NIPS, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. 1998.

William R Thompson. On the likelihood that one un-
known probability exceeds another in view of the
evidence of two samples. Biometrika, 1933.

Jakub M Tomczak and Max Welling. Improving
variational auto-encoders using householder flow.
arXiv:1611.09630, 2016.

Ronald J Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

Yizhe Zhang, Xiangyu Wang, Changyou Chen, Ri-
cardo Henao, Kai Fan, and Lawrence Carin. To-
wards unifying hamiltonian monte carlo and slice
sampling. In NIPS, 2016.

Yizhe Zhang, Changyou Chen, Zhe Gan, Ricardo
Henao, and Lawrence Carin. Stochastic gradient
monomial gamma sampler. 2017.

