Bayesian Deep Q-Learning via
Continuous-Time Flows

Ruiyi Zhang Changyou Chen Chunyuan Li, Lawrence Carin
Duke University SUNY at Buffalo Duke University
Durham, NC 27708 Buffalo, NY 14260 Durham, NC 27708

ryzhang@cs.duke.edu cchangyou@gmail.com {c1319, lcarin}@duke.edu

Abstract

Efficient exploration in reinforcement learning (RL) can be achieved by incor-
porating uncertainty into model predictions. Bayesian deep Q-learning provides
a principle way for this by modeling Q-values as probability distributions. We
propose an efficient algorithm for Bayesian deep Q-learning by posterior sampling
actions in the Q-function via continuous-time flows (CTFs), achieving efficient
exploration without explicit assumptions on the forms of posterior distributions.
Specifically, based on the recently proposed soft Q-learning framework, our algo-
rithm learns an energy-based policy, which is distilled into a sampling network via
CTF for efficient action generation. The distillation procedure relies on the recently
developed technique of particle optimization in CTF. Experiments on the toy and
real tasks demonstrate excellent exploration ability of our algorithm, obtaining
improved performance, compared to related techniques such as Stein variational
gradient descent in standard soft Q-learning.

1 Introduction

We consider reinforcement learning (RL) for the task of sequential decision-making under unknown
environment dynamics. A typical formulation for sequential decision-making is Markov decision
process (MDP), in which an agent interacts with an environment in the attempt to maximize the
accumulated reward. At each interaction, an agent takes action based on the current state, a reward
will be returned from the environment, and the agent will transit to a new state. Due to the unknown
underlying dynamics for the states and the rewards, the agent is trained to manage trade-off between
exploration and exploitation, i.e., exploring some potential optimal actions in the long term, or taking
current known optimal action to maximize the current reward.

As an effective and popular way to tackle exploration-exploitation trade-off, Thompson sampling
(TS) maintains a posterior distribution over some quantity, which is used to generate the next reward.
TS is believed better than optimization for MDPs [22] due to its feasibility to incorporate the problem
structures as the priors while maintaining efficient computation. It also has been investigated in
the contextual multi-arm bandits (CMABs), which can be regarded as MDPs with a single state
[4) 131 116]. Thus, TS is a preferable way to balance exploration and exploitation than other heuristic
methods.

However, posterior distributions are usually intractable except for some simple toy problems. Con-
sequently, many methods such as variational inference and MCMC can be used for posterior ap-
proximation [3} |33} [7]. In this paper, we propose to use continuous-time flows (CTFs) [3]], for
approximately sampling the unknown policy in the deep soft)-learning framework [11]]. Specifically,
a generator (sampling network) is learned to transform a simple distribution (e.g., N'(0,71)) to a
stochastic policy. In contrast to most methods on Bayesian RL [8| [12], our method can effectively
represent complex multimodal policies, while enabling efficient sampling. The technique adopted

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

for learning the sampling network relies on the development of CTFs in [[6], which provides the first
method to directly solve a sampling problem via stochastic optimization. More details are described
in Section3l

2 Preliminaries

2.1 Thompson Sampling

Thompson sampling [29] is a popular method to solve sequential decision problems [17, 25 21]]. Tt
approximates the posterior of the policy parameters in an online manner. At each step, Thompson
sampling (i) first draws a parameter sample, then (ii) picks the action by maximizing the expected
reward over current step, (iii) collects data samples after observing the reward, and add it into
experience pool, and (iv) updates posterior of the policy.

Thompson sampling is a natural way to utilize model uncertainty in sequential decision problems.
Greater uncertainty on the weights typically introduces more variability into a decision made by
a policy network [15], naturally leading the policy to explore. As more data are observed, the
uncertainty decreases, allowing the decisions made by a policy to become more deterministic as the
environment is better understood (exploitation when the policy becomes more confident).

In the Bayesian Q-Learning setting, uncertainty in the parameters of Q-value can be translated into
uncertainty in the predicted actions, i.e., instead of learning a distribution over parameters, we can
directly learn a conditional distribution characterized by a stochastic policy. This setting is adopted in
this paper, where a stochastic policy is learned implicitly in the soft deep -learning framework by
CTFs.

2.2 Reinforcement Learning

The sequential decision-making procedure is formulated as MDP, which defines a tuple M =
(S, A, P, P.,r,v), where S is the state space, A the action space, r € R is the reward, P; and
P, are the unknown environment distributions to draw the next state and reward, respectively. At
each time step ¢, given the current state s; € S, an agent can take an action a; € A based on
a policy m(a¢|s:), a mapping from a state to an action; the state s; then transits to a new state
St+1 ~ Ps(8t, at), and the agent receives a reward r; ~ P,.(8t, a;) from the environment. The goal
of RL is to find the optimal policy 7(a;|s;) to maximize the expected reward:

T(7) =3 V' Es, an)mpsTt (1)
t

where p, (s¢, a;) denotes the induced state and state-action marginals of the trajectory distribution,
and ~y is the discount factor ensuring that the sum of expected rewards is finite. To incorporate prior
domain knowledge for the policy, we restrict the optimal policy to be close to a prior distribution
p(a). Consequently, the objective (IJ) is formulated as:

T = arg mjLXZVtE(st,at)ww [re — aKL(7(:|s¢)[lp(+))] 2)
t

If we use an improper (uninformative) prior p, and the KL term is simplified to the entropy H (7 (+|s¢)),
resulting in the maximum entropy reinforcement learning framework (MERL). « is the temperature
parameter determining the relative importance of the entropy and reward. Specifically, the MERL
augments the reward with an entropy term, such that the optimal policy aims to maximize its entropy
as well at each time. The optimal policy is solved by the following optimization problem:

TME = arg IngxijfytI[<](s”1t)~,J7r [re + aH(m(-]s¢))] - 3)
t

2.3 Soft Q-Learning

The MERL framework essentially leads to the (Q-learning framework with an entropy-regularized Q-
value, called soft (Q-learningi.e., soft versions of the value function V;(s;) and Q-functions Q(s, a;)
are defined. Specifically, we have:

Lemma 2.1 ([11)) The optimal policy for the soft Q-Learning (3)) is given by
1
sslalsn) o (1 (@2lsna) Vi)) | @

where the optimal soft Q-function Q% (s, at) and soft value function V' (s;) are defined as follows,
respectively.

Qi(st,ae) =71+ E(spyy o), [Z V(e + O‘/H(W;IE("SFH)))] ;)
=1

V2(s0) = alog [exp (1Q:<st,a'>) da | ©)
A (6%

The soft value function V2 in terms of an expectation can be expressed via importance sampling:

1nHe ’
VO(s141) = alogE,, [W} where ¢,/ can be an arbitrary distribution over the

action space. Lemma [2.T|suggests a natural way to parameterize the optimal soft)-function with a
deep neural network (DNN), denoted as Qf(s, a;) and parameterized by 0 [11]]. The soft Q-iteration
is equivalently to minimize the following objective:

A 1 /45 2
JQ(a) = EStNQst yat~qay |:2 (Qg(3t7 at) - Qf(sta at)) :|) (7N

where ¢s, and gq, can be arbitrary distributions with supports on S and A, respectively; Q9 (s, a;) =
Tt +VEs, 1 mpn [VE(8141)] is the target Q-value.

Following [[11]], real samples from current policy are used to estimate g5+ and qq/. Further, it is
difficult to sample from 73z (a+|s:) directly. Consequently, [11]] propose to use an implicit generator
f?(&; s) that takes state s and random noise ¢ as input, and outputs an action @ whose distribution
attempts to approach 7y (a¢|s:). In their method, they use amortized Stein variational gradient
descent (SVGD) to learn the parameter ¢ of the generator f¢(&;s) .

In this paper, instead of adopting SVGD, we investigate an alternative method CTFs [5] to learn
the sampling network f?(£; s) to approximate the optimal stochastic policy. CTFs appear to endow
advantages from both theoretical and application perspectives, as will be discussed later. Importantly,
instead of adopting the amortized learning idea for CTFs, we propose a novel algorithm to directly
optimize f?(¢; s).

2.4 Continuous-Time Flows

Assume the action space to be R”. We consider a flow on R”, defined as the mapping 7 : RL x R —
RZ such that we have T (a,0) = a and T (T (a,t1),t2) = T(a,t; + t2), for all @ € RL and
t1,t2 € R. A typical example of this family is defined as T (a,t) = a;, where a, is driven by a
diffusion of the form:

da; = Fs(ay)dt + og(ay)dW .)

Here F, : RE — RL, o5 : REXL 5 RL are called the drift term and diffusion term, respectively; they
both depend on some parameter s (in our case s represents the state); VV is the standard L-dimensional
Brownian motion. In our setting, we seek to make the stationary policy distribution of a; approach
the optimal policy, 7z (a¢|s;). One solution for this is to set Fs(a;) = 4V log 7z (a¢|s;) and
os(ay) = I, with Iy, the L x L identity matrix. The resulting diffusion is called Langevin dynamics
[31]. Denoting the policy distribution of a; as p;, it is proved [24]] that p; is characterized by the
Fokker-Planck (FP) equation:

I

2= Ve (pFs(an) + Vi (os(a)o] (a) | ©

where a - b £ a b for vectors a and b, A : B £ trace(A ' B) for matrices A and B.

Compared with SVGD SVGD has been explained as gradient flows whose gradient operator is
defined on the RKHS [18]]; whereas CTF are flows with the flow operator defined on the £, space.
Since RKHS is smaller than Lo, CTFs can obtain better asymptotic properties than SVGD in theory
[L8]. Introducing CTF naturally brings some nice properties specially for soft Q-learning; however, it
also brings challenges in the learning process, as detailed in section 3.

3 Soft Q-Learning via CTFs

We describe our method in the soft)-learning setting defined above. Our goal is to learn a stochastic
policy f¢(¢&; s) such that samples {a¥}}. generated by f¢(¢; s) approach the optimal policy
e (at]st). We first introduce lemma 3.1|from [35]], viewing CTFs from an optimization perspective.

Lemma 3.1 Assume that mjp(at|s:) < Cy is infinitely differentiable, and ||V g log myp(at|s:)]| <
Cy (1 + C1 —logmyg(ailst)) (Ya, s) for some constants {C1,C2}. Let T = hK with K being an
integer (interpreted as number of iterations) and h interpreted as stepsize, pg is an arbitrary distribu-
tion with same support as myg(as|st), and {py }1_, be the solution of the functional optimization
problem:

S

5 W3 (Pr-1.p) (10)

P = arg min (pllmie(lse) +
pEL2

where W3 (pi1, p2) £ infpep (o) |l — yng(d:c, dy), Wa (p1, pio) is the 2nd-order Wasser-

stein distance, with P(u1, p2) being the space of joint distributions of {1, p2}. Lo is the space

of probability distributions with finite 2nd-order moment. Then py converges to pr in the limit of

h =0, i.e, limy_,0 px = pr, where pr is the solution of the FP equation (9) at time T.

Lemma reveals an interesting way to compute pr via a sequence of functional optimization
problems. By comparing it with the objective of SVGD, which minimizes the KL-divergence between
pr. and T (ay, S¢), at each sub-optimization-problem in Lemma [3.1] it minimizes the same KL-
divergence, plus a regularization term as the Wasserstein distance between p,_; and pg. The extra
Wasserstein-distance term arises naturally due to the fact that the Langevin diffusion can be explained
as a gradient flow equipped with a geometric associated with the Wasserstein distance [23]]. From
another point of view, it is known that the Wasserstein distance is a better metric for probability
distributions than the KL-divergence, especially in the case of non-overlapping domains [1} [2].

Binding the generator to the FP equation Denote the distribution induced by the generator
f?(&; s) as w®(+|s), where ¢ are samples of some simple distribution. Instead of adopting the
amortization idea to update ¢ with CTF as in [5]], we directly match 7%(-|s;) to p; defined in
Lemma i.e., we want 7%(-|s) to evolve as the FP equation (9). According to Lemma this
corresponds to an optimization problem with objective

Te(6:82) = KL (7 (1) e 130) + 57
¢ (-|8)EX2

W3 (% (-]s), 7% (]s))
for iteration ¢, where K5 is the space of probability distributions with finite second moment.

3.1 Optimization

We can apply SGD to update the policy parameter. Specifically, we need to calculate:

OJr(¢y8:) OKL (w?(:|s)l|lmyme(-]se)) +i8W§ (mPou(-|s), 7 (-]s))
o B 2h Bl ’

Y

When 7¢(+|s) lies on the RKHS defined in SVGD [19], the first term in the RHS of (TT) is readily
calculated in [T1]. In our case, 7®(-|s) is restricted to a larger space of L. Following [6], we
approximate this by adding noise in the gradient calculated using SVGD, resulting in

OKL (7?(|s) | mye (-]5¢))

P
- ~Be |(Arf(gs) +) TS e oo, a2

d¢

where Af¢(§7 st) £ Eatwﬂ'¢’ [K(ata f¢('; st))va’Qg(sh a/) |a’:a + ava’ﬁ(a/7 f¢(a St)) |a’:a] 5
with x being a kernel function; 0 is a user-control parameter, controlling the variance of injected
noises. 4 is typically decreasing in the algorithm to ensure convergence. Note that this technique
resembles stochastic gradient descent, where full gradients are replaced with noisy gradients, thus its
convergence can still be guaranteed.

In order to calculate the second term on the RHS of (TI), we adapt results from optimal transport
theory [30,[10] to rewrite W3 (7% (-[s), 7¢(-|s)) as

W3 (x¥4([s), 7*(-|s)) (13)
E i |01 + B [0l 2 50D ~Eqr iy [$(0)] ~ Bayms [97(0)]

1(+) convex
where ¢*(a) £ sup, (v'a —(v)) is the convex-conjugate of the function 1. To optimize
W3 (w?u(-|s), 7*(:|s)), we can construct a GAN-like structure, with discriminator defined as
the “sup” part in (I3), except that the discriminator is required to be convex. For ease of calculation,
following our ongoing work [6]], we restrict 1 to be a quadratic function, e.g., 1)(a) £ %aTAaA— b'a
with parameters { A, b}. After simplification, we obtain a simple form of

2
W22 (7T¢“1d('|s)7 7T¢('|S)) = Ea’~7r¢old,a~ﬂ'¢ (a - a/) .

Then we obtain the gradient of Wasserstein-2 trust-region AW2 = % (fO(&; 8¢) — fPu(; st)).
Since a ~ 7 is equivalent to & ~ qo(&),a = f?(&; ;) with go(+) a simple noise distribution, the
gradient can be approximated as

0J(¢; s Of®(&;s

é(;:;t) ~ E¢ (Af¢(§;st)+C+AW22) fé()fbt) (14)
This is essentially SVGD with noisy gradient and momentum algorithm, a nice connection between
SVGD and CTF [6]]. Since SGD with momentum has show faster convergence speed than standard
SGD, CTF is also expected to be faster than SVGD. We also note that this is the first time the FP
equation of an CTF can be solved efficiently via optimization, as it was believed that the optimal
decreased direction of the FP equation is generally infeasible [18]].

Connections with Thompson sampling Different from traditional TS, which draws samples from
the posterior distribution of policy parameter, we learn to draw samples from posteriors of stochastic
policies, i.e., the posterior is encoded in an implicit distribution so that parameter uncertainty in
traditional TS is translated into uncertainty in action samples. The proposed method has the following
advantages: i) exploration is achieved by similar ideas from TS. ii) The intractable posterior sampling
for complex policies in TS is overcome by introducing an implicit policy network that does not endow
an explicit distribution form, forming a larger candidate distribution space. iif) The sampling network
directly approximate the stochastic policy in action space instead of uncertainty in parameter space,
achieving more efficient exploration.

Connections with Trust Region Policy Optimization (TRPO) Recent work [26]] has illustrated
the equivalence between soft Q-learning and policy gradient. We can also show the connection
between the proposed method and TRPO [27]. In TRPO, an objective function is maximized
subjected to a constraint on the size of policy update. Specifically,

. [Cls)
m(gx Et |:7r¢old(|s)At:| (15)
subject to [KL[7?(:|s), 7%%(-|s)]] <o (16)

Here, 7y is a stochastic policy; ¢oiq is the vector of policy parameters before the update; Ay is an
estimator of the advantage function at timestep ¢. The theory of TRPO suggests using a penalty
instead of a constraint, i.e., solving the unconstrained optimization problem,

maXA mA_ 7T¢'S 7r¢old_s
ax B L@,m(.s)At BKL[m®(:|s), m (|)}] (17)

Average Reward

In our proposed framework, the Wasserstein distance between 7¢(|s) and 7% (-|s), a weaker metric
than the KL divergence, constrains the update of a policy on a manifold endowed with the Wasserstein
metric, and potentially leads to more robust solutions. This is evidenced by the development of
Wasserstein GAN [2]. As a result, our framework can be regarded as a trust region based counterpart
for solving the soft Q-learning problem [[11]].

4 [Experiments

To demonstrate the effectiveness of our proposed CTF soft (Q-Learning (CTF-(Q for short), we first
conduct a toy experiments following [11]. We then test our method on classic continuous control
problems: CartPole (S C R*, A CRD, CartPoleSwingup (S C R%, A C RY), DoublePendulum
(S C RS, A CR'Y. The superiority of CTF-@ is further demonstrated on the MuJoCo continuous
control tasks: Walker2D, Swimmer, and Hopper. All experiments are based on the OpenAl r1lab
toolkits [9]].

We compare CTF-(Q with the recently proposed soft Q-Learning (Soft-@) for short) algorithms, as
it has shown superiority compared with other methods such as DDPG [28], A3C [20], TRPO [27],
etc. The ADAM [14] optimizer is employed when needed. We use a RBF kernel x(6,80') =
exp(—||@ — @’||3/h) when calculating (T2)), with the bandwidth set to h = med?/ log M. Here med
is the median of the pairwise distance between particles. We set the hyperparameter, temperature
a = 1. All experiments are conducted on a single TITAN X GPU. Performance is measured through
the average return (not including the intrinsic rewards) at each episode.

4.1 Classic Control Problems

For classic control problems, we adopt similar settings as [12,[32], where the (-function is parame-
terized by a two-layer (25-16 hidden units) NN with tanh as the activation function for the complex
Cartpole Swingup and Double Pendulum tasks. The agents are trained for 100 episodes. For the
easier task Cartpole, a one-layer (32 hidden units) NN is used, and the agents are trained for 50
episodes. The maximal length of horizon is set to 10000. We use a batch size of 64, with M = 16 and
a = 1. We implement sampling networks with the same size as the Q-network. Figure|I]illustrates
the learning curves obtained with CTF-QQ and SVPG. Compared with SVPG, CTF-(Q) appears to
converge faster and is more stable in the three classic continuous control tasks with lower variance.

Cartpole Cartpole Swing Up Double Pendulum

— Soft-Q
— CTF-Q -400

5000

4000

-600
3000

-800
2000

Average Reward
|
Average Reward

-1000
1000
— Soft-Q

-100 -1200 — CTF-Q

0 20 40 60 80 100 0 200 400 600 800 1000 0 200 400 600 800 1000
Episodes Episodes Episodes

(a) Cartpole Swing Up (b) Double Pendulum (c) CartPole

Figure 1: Average return over episodes by SVPG and CTF-Q (IP-WGF) on classic continuous control tasks.

4.2 MuJoCo Environment

We further apply our proposed method on MuJuCo tasks, where the Q)-function is parameterized by a
two-layer (128-128 hidden units) NN with tanh as the activation function for all tasks. All agents
are trained for 150 episodes. The maximal length of horizon is set to 1000. Again we use a batch size
of 64, with M = 16, o« = 1. We implement sampling networks with the same size as the ()-network.
Figure 2]illustrates the learning curves of all the three tasks. Similarly, faster convergence and larger
rewards are obtained by our proposed CTF-(@) method.

Swimmer Hopper Walker
3000
— Soft-Q — Soft-Q

200 e Gl O 2500 — GIEO
120

=
S
3

1500 2000

®
3
N
@
2
3

1000

8
Total Return

Average Return
Average Return

1000

N
]

500

N

S
a
3
3

o

0

o

0 200 400 600 800 1000 0 250 500 750 1000 1250 1500 1750 2000 0 200 400 600 800 1000 1200 1400
Epoch Epoch Epoch

(a) Swimmer (b) Hopper (c) Walker
Figure 2: Learning curves of Soft-Q and CTF-Q on MuJoCo tasks.

5 Conclusion

We present a method for learning stochastic energy-based policies by implicit sampling networks
learned via a novel technique based on CTF. Our approach is a type of soft Q-learning method,
with powerful exploration ability. Sampling from the sampling network can be viewed as a type
of Thompson sampling. Our experimental results show that our method can effectively explore
multi-modal landscapes of the policy networks. Experiments on complex continuous control of
simulated robots such as walker, swimmer and hopper show promising results compared to the
recently proposed soft Q-learning. To sum up, our method demonstrates that stochastic policies with
improved exploration by TS-style methods provide a a promising way to solve Bayesian deep RL
problems.

References

[1] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial
networks. In ICLR, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In ICML, 2017.

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
networks, 2015.

[4] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In NIPS, 2011.

[5] C. Chen, C. Li, L. Chen, W. Wang, Y. Pu, and L. Carin. Continuous-time flows for deep
generative models, 2017.

[6] C. Chen and R. Zhang. Particle optimization in stochastic gradient MCMC. arXiv:1711.10927,
2017.

[7] C. Chen, N. Ding, C. Li, Y. Zhang, and L. Carin. Stochastic gradient mcmc with stale gradients.
In NIPS, 2016.

[8] R. Dearden, N. Friedman, and S. Russell. Bayesian g-learning. In AAAI/IAAI, 1998.

[9] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In ICML, 2016.

[10] S. Feizi, C. Suh, F. Xia, and D. Tse. Understanding GANs: the LQG setting. In
arXiv:1710.10793, 2017.

[11] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based
policies. In ICML, 2017.

[12] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. In NIPS, 2016.

[13] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla. Efficient thompson sampling
for online matrix-factorization recommendation. In NIPS, 2015.

[14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[15] J. Z. Kolter and A. Y. Ng. Near-bayesian exploration in polynomial time. In /CML, 2009.

[16] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In WWW, 2010.

[17] L.Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In WSDM, 2011.

[18] Q. Liu. Stein variational gradient descent as gradient flow. In NIPS, 2017.

[19] Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In NIPS, 2016.

[20] V.Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In ICML, 2016.

[21] I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior
sampling. In NIPS, 2013.

[22] I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In ICML, 2017.

[23] F. Otto. Dynamics of Labyrinthine pattern formation in magnetic fluids: A mean-field theory.
Arch. Rational Mech. Anal., 1998.

[24] H. Risken. The Fokker-Planck equation. Springer-Verlag, New York, 1989.

[25] D. Russo and B. Van Roy. An information-theoretic analysis of thompson sampling. JMLR,
2016.

[26] J. Schulman, P. Abbeel, and X. Chen. Equivalence between policy gradients and soft g-learning.
arXiv:1704.06440, 2017.

[27] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In ICML, 2015.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In ICML, 2014.

[29] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 1933.

[30] C. Villani. Optimal transport: old and new. Springer Science & Business Media, 2008.

[31] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
ICML, 2011.

[32] R. Zhang, C. Li, C. Chen, and L. Carin. Learning structural weight uncertainty for sequential
decision-making, 2018.

[33] Y. Zhang, X. Wang, C. Chen, R. Henao, K. Fan, and L. Carin. Towards unifying hamiltonian
monte carlo and slice sampling. In NIPS, 2016.

A Learning Multi-Modal Policies for Exploration

Following [11]], we first validate CTF can correctly draw samples from energy-based policies by
learning a sampling network that represents multi-modal policies. In this environment, a 2D-point-
mass agent is trying to reach one of four symmetrically placed goals. The reward is defined as
a mixture of Gaussians, with means placed at the goal positions. Figure [3|illustrates the policies
obtained by CTF-(Q and Soft-@) for the same number of updates. It is seen that CTF-(Q) explores the
modes better than Soft-Q). Specifically, trajectories of CTF-(Q uniformly reach the four target goals,
while more trajectories reach the goal on the right in Soft-(, indicating that CTF-(Q) endows better
exploration ability than Soft-Q).

paths paths

ho

L Ty =) - //:\,\ {iﬂ

P
L%

2 ‘ 2
R -,
/A PR W SN /A e
1 i_!i.’:!pz_k_g s ﬁ}"i =
N NI

O

h 10) 4 '-..§ &//w

2‘ 4 6
Figure 3: Illustration of the 2D multi-goal environment. The z and y axes correspond to 2D positions (states).
The agent is initialized at the origin. The goals are depicted as red dots, and the level curves show the reward.
The left plot represents the policy learned by Soft-(Q), and the right plot represents the policy learned by CTF-Q).

A

T
2

B Algorithm Overview

10

Algorithm 1 CTF Q-Learning

Require: D = (); initialize @, ¢ ~ some (prior) distribution. Target parameters: 8 < 6, ¢ < ¢
1: for each epoch do

2: for each t do
3: % Collect expereince
4: Sample an action for s; using f?: a; < f?(£;s;), where & ~ N(0,1).
5: Sample next state from the environment: $;1 ~ ps(S¢+1/8t, at)
6: Save the new experience in the replay memory: D < D U {s, at,7(St, at), S¢41}
7: % Sample a minibatch from the replay memory
8: {(sﬁ”, a,EL), rgz), 5§21) ~ D.
9: % Update Q function parameters
10: Sample {a("?)}}L ~ gq for each sgﬂl
11: Compute empirical soft values VSO ft(st +1) in H
12: Compute empirical gradient Vo Jo(0) of 1.) and update @ according to it using ADAM
13: % Update policy
14: Sample {é(i’j)}M ~ J\/(O I) for each sgz)
15: Compute actions a!"?) = f ¢(£ (0.)
16: Compute emplrlcal estimate in (and update ¢ according to it using ADAM
17: end for
18: if epoch mod update_interval = 0 then
19: Update target parameters: 8 < 0, ¢ < ¢
20: end if
21: end for

11

	Introduction
	Preliminaries
	Thompson Sampling
	Reinforcement Learning
	Soft Q-Learning
	Continuous-Time Flows

	Soft Q-Learning via CTFs
	Optimization

	Experiments
	Classic Continuous Control Problems
	MuJoCo Environment

	Conclusion
	Learning Multi-Modal Policies for Exploration
	Algorithm Overview

