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e Propose two constructions of Dependent Normalized Random Measures re-
lated to [RaoTeh09, LinFisher12]:

— Mixed Normalized Random Measures
— Thinned Normalized Random Measures

e Analyze their distributional properties
e Analyze their distributional properties and posterior structures
e Provide alternatives to dependent DP and IBP

e Application to time series dynamic topic modeling

Normalized Random Measures

Completely Random Measure (CRM): Let S = R x ©, a CRM i is defined
as a linear functional of the Poisson random measure N (-) (the intensity of the
Poisson process v(-) is the Lévy intensity of /i)

i(B) = /R . IN(dt,9),VB € B(6),
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Poisson processes: Completely random measures:

N(A) = (w0)eaOw) (A) = D (1. g)ea WO

Normalized Random Measure (NRM): An NRM is obtained by normalizing

the CRM 1 as: u = ( o) A normalized generalized Gamma process (NGG) is

an NRM with Lévy measure being < y faH (df),b > 0,0 <a < 1.

Graphical Construction of dNRMs

® 1, -, upr: Rindependent NRMs, each for a Region r.

® iity, "+, hty : the constructed dependent NRMs, each for a Time t;.
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dNRM-1: Mixed Normalized Random Measures

dNRM-2: Thinned Normalized Random Measures

Vt<w, 9) —

e Construction by weighting:

pit (d0) :

e Construction by thinning:

= —i+(df) , where Z; =
Zt

iy (df) = /  wN(dw, d8, da),
Rt xR,
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for each region r

for each time ¢

for each time ¢

for each region r

for each atom k

for each time ¢

Distributional Properties

r=1

Z V’l“(w/QTta 9)/(17“75

for each time ¢

p's in both MNRM and TNRM are marginally Normalized Random Mea-
sures, with Lévy intensities having the following forms:

Margina/ VS Slice Sampler with Effective Sample Sizes

e MNRM has a nice marginal posterior.

e Conditioned on some auxiliary variables u;’s

DOMI | MINA
NVS TIO
ILLV | MEA

UNIVER

s 1 TYX

Conditional Posterior of MNRM

“, the posterior of MNRM is a

generalization of a CRP via the following prediction rules:

p(sy = k, gy = r|others})
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if £ already exists,

) Jo F(x4|0)H(6)do

where F>]§l(xtl) is the conditional density of the observations.

e This allows a marginal sampler as well as a slice sampled to be developed.

ICML,

Persony

NIPS9

Models

ESS (ave/Med/min) | Time

ESS (ave/Med/min) | Time

ESS (Ave /Med/ Min) ‘ Time

HMNGG
HMNGGg

57.4/52.5/7.3 | 665
125.4/112.5/15.0 | 69s

119.4/102.0/3.1
212.9/212.0/5.9

1.0h
1.1h

111.1/73.8/3.3 | 1.5h

205.2/203.0/5.5

1.9h

HTNGG
HTNGGg

50.3/46.9/3.0 | 71s
94.9/90.9/4.0 | 76s

144.8/170.6/4.2
153.2/113.5/2.7

1.3h
1.1h

119.1/130.0/2.8
176.1/151.0/3.3

2.3h
1.9h

Topic Modeling: Perplexities

Datasets

ICML

Person

Models

train perplexity

test perplexity

train perplexity

test perplexity

HDP

530 = 6

1017 £ 8

4541 £ 33

5962 &= 43

HNGG

D75 L5

1057 £ 8

4565 =+ 60

5999 + 54

TNGG

681 = 23

1071 =6

O815 £ 122

7981 £ 36

MNGG

569 = 6

1056 = 9

4560 == 63

6013 4= 66

HSNGG

Ho0 = 5

1007 £ 8

4324 &+ 77

5733 £ 66

HTNGG

D727

945 £ 7

4196 == 29

Ho27 = 47

HMNGG

535+ 6

1001 = 10

4083 =+ 36

5488 144

HMNGP

561 = 10

995 + 14

4118 =45

5019 £ 41

“see the paper for details.

Conditional Posterior Levy Measure of TNRM

e Posterior structure of TNRM is complex, i.e., it is equivalent to a NRM mix-

ture of 2! independent NRMs, so the complexity increases exponentially
fast with #times T.

e Marginal sampler for TNRM is infeasible, thus a slice sampler is needed
relying on the following conditional posterior of TNRM (built on Poisson
process partition calculus [James05]):

V. (dw, df)

t

Theorem 1 Given observations, some auxiliary variables wu; for each vy, the points in
v, without observations are distributed as a CRM with Lévy measure

= H (1 — qrt T erte_utw) vr(dw, db) .

Remark Posterior inference for dependent DPs via thinning can not be per-
formed via the standard Chinese restaurant processes prediction rules.

Topic Evolution on NIPS with HMNRM
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