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Differential Topic Models
Changyou Chen, Wray Buntine, Nan Ding, Lexing Xie, and Lan Du

Abstract—In applications we may want to compare different document collections: they could have shared content but also
different and unique aspects in particular collections. This task has been called comparative text mining or cross-collection
modeling. We present a differential topic model for this application that models both topic differences and similarities. For this we
use hierarchical Bayesian nonparametric models. Moreover, we found it was important to properly model power-law phenomena
in topic-word distributions and thus we used the full Pitman-Yor process rather than just a Dirichlet process. Furthermore, we
propose the transformed Pitman-Yor process (TPYP) to incorporate prior knowledge such as vocabulary variations in different
collections into the model. To deal with the non-conjugate issue between model prior and likelihood in the TPYP, we thus propose
an efficient sampling algorithm using a data augmentation technique based on the Multinomial theorem. Experimental results
show the model discovers interesting aspects of different collections. We also show the proposed MCMC based algorithm
achieves a dramatically reduced test perplexity compared to some existing topic models. Finally, we show our model outperforms
the state-of-the-art for document classification/ideology prediction on a number of text collections.

Index Terms—Differential Topic Model, Transformed Pitman-Yor process, MCMC, Data Augmentation
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1 INTRODUCTION

Automatic comparison of different data collections
(or multiple corpora) is a broad challenge task that
has been called comparative text mining [1], and is
important due to the well known phenomenon of
information overload. In this paper, we develop a
differential topic model to address this task, preferring
the term over cross-collection topic model [2]. For this,
we want to compare topics for document collections
where some of these topics capture the shared content
among collections and others capture the different
aspects that each collection contains. For example, in
text discovery systems analysts may want to:
• compare news coverage for related companies,

for instance two big supermarket chains,
• explore news bias across different media empires

on key issues, e.g., political leadership challenges;
• contrast reports written by different subject mat-

ter experts on an area of strategic national impor-
tance, e.g., the purchase of strike fighter aircraft.

A related task is differentiating ideologies or perspec-
tives [3], also approachable from different levels of
granularity [4], for instance the sentence level.

The first topic models of this kind were developed
by Zhai et al. [1] in the framework of PLSI [5], and
later modified using an LDA style by Paul [2] and
some related approaches [3, 6]. Empirical studies of
these approaches were done [3, 7], and they were ex-
tended to different tasks, for instance to multi-faceted
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topic models where the facets are to be discovered or
only partially known [8] and using linguistic analysis
for additional tasks [9].

The basic idea here is that multiple collections have
word usage in common but also word usage that is
unique to each collection. By linking the common and
unique words through a latent topic, and thus enforc-
ing co-occurrence, the similarities and differences are
discovered. The basic approach [2] is simple and fast,
for instance ccLDA1 has speeds similar to LDA.

The initial point of departure for our research is that
we should explore the same ideas but in the context of
hierarchical Bayesian modeling. In the machine learning
community, a topic is defined as a collection of related
words from the vocabulary [10]. In general, words
are samples from a discrete distribution called the
topic-word distribution. Rather than maintaining a
shared word probability vector for each topic, we
make the word probability vectors for specific topics
across different collections have a common parent for
a prior. Thus topics across collections are matched and
apriori expected to share some similarities. Perhaps
this more subtle approach can give better results?
Those topics that are similar across collections should
come from the same parent in the hierarchy. Those
topics that have (reduced) similarity but also some
differences, should also come from the same parent
but have greater prior variation from the parent. The
variance parameters for each topic in the hierarchical
Bayesian model are a key handle for tuning the model,
and their affect is one target for our research.

Most existing hierarchical techniques for modeling
topic-word distributions are based on the Dirichlet
process (DP) [11–14]. This can often be improved by
using the Pitman-Yor process instead because it has

1. http://cs.jhu.edu/∼mpaul/downloads/mftm.php
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Fig. 1: Differential topic modeling using the TPYP.
The top level is an abstract space that generates
each sub-space for each group of documents. Each
group’s vocabulary subspace is formed by taking a
transformation from the top abstract space.

been shown that the power-law behaviour of PYP
is in line with the Zipf’s law for word usage [15].
Models that can capture the power-law can perform
better [16]. Therefore, another target for our research
is to model the topic-word distribution with a prior
having a power-law behaviour.

An important aspect we observed in initial inves-
tigations is changes in word use across collections.
One can assume that all the collections might share
vocabulary, however, the use of specific words might
be different across collections. Here, the notion of
different word use is that different words can be used
to express the same meaning, and the same word in
different collections may mean different things. For
example, “takeover” and “merge” used in Australia
and New Zealand stock markets respectively actually
mean the same thing so they should share some
information. Thus, another target of our research is to
encode the information about different word use, but
without losing the shared semantics in the topics. In
what follows, we will show that our proposed trans-
formed Pitman-Yor process (TPYP), which is defined as
a Pitman-Yor process (PYP) with a transformed based
measure, can be used to achieve the goals of power-
law behaviour, different degrees of variation amongst
topics, and different word use.

The general structure of our differential topic model
is given in Figure 1. It consists of several LDA in-
stances run in parallel unified with a hierarchical
model of the word-topic distributions that are mod-
elled with the TPYP.

1.1 Overview and Paper Organization
In this paper, we propose a framework to model
differences of topic-word distribution among groups
of datasets from different sources (each called a “col-
lection” or “group”). The basic idea is to use the TPYP
as a prior on the topic-word distribution, so that not

only the power-law phenomenon is properly mod-
eled, but also each group has different but correlated
base topic-word distributions. The main contributions
of this paper are:
• the use of the TPYP in a hierarchical context for

differential topic modeling,
• an efficient sampling algorithm with data aug-

mentation and re-parameterization of the TPYP,
• and state of the art results for docu-

ment/ideology classification.
Experimental work shows significant improvement
over baselines and related work:
• Tests on a number of datasets from different

sources such as texts from news media and blogs,
natural images and handwritten digit images.

• Evaluation with various criteria such as
topic alignment, perplexity and opinion
prediction/document classification, all show
significant improvement compared with state-of-
the-art baselines.

For the rest of this paper, we first review some
related work on correlated topic modeling in Sec-
tion 2. We then introduce the basic theories of the
hierarchical PYP and TPYP in Section 3. The differ-
ential topic model using the transformed Pitman-Yor
process (TPYP) is proposed in Section 4. In Section 5
we introduce an efficient algorithm for posterior in-
ference of the TPYP. Experimental results are reported
in Section 6.

2 RELATED WORK

The proposed differential topic model is an instance of
the general correlated topic model family, where we
try to model different sources of correlation between
documents. Correlation in topic models can be con-
sidered in two forms: (1) the correlation in topic dis-
tributions, the correlation between topics; and (2) the
correlation in topic-word distributions, the correlation
between words. Our model falls into the later case.
There is considerable research from both perspectives,
each with different motivation and algorithms.

For the first case, representative work are on shared
and hierarchical topic models. Blei et al. proposed
the correlated topic model [17], which replaces the
Dirichlet prior with a logistic normal distribution.
A Gibbs sampling method for this kind of model
is described in [18]. Later, Paisley et al. extend the
logistic normal distribution to a nonparametric setting
and also use it for correlated topic modeling [19].
This generalizes the model of [17]. The nested Chinese
restaurant process [14] models topic hierarchies by in-
troducing a nested Chinese restaurant process (nCRP)
prior on a tree. Documents are generated by drawing
a set of words along the path of one branch in the
tree, following the nCRP prior. Li et al. proposed the
Pachinko Allocation model (PAM) [12] to model topic



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, XXX XXX 3

correlations using a directed acyclic graph. In the four-
level PAM, they assume words in the documents are
drawn by choosing a super-topic which generates the
sub-topic word distributions. Sampling is performed
on an extended version of LDA with multiple levels.
Du et al. developed a series of models exhibiting shar-
ing across segments in a document both hierarchically
and sequentially [20, 21] that were very competitive
against standard LDA. Note that the above works,
while hierarchical, do not consider the problem of
topic sharing between groups of datasets, nor do they
consider correlations among words in the topic.

On the other hand, there is also work on modeling
topic-word distributions. Andrzejewski et al. [13] use
a Dirichlet forest prior for the topic-word matrices
so that some must-link and cannot-link constraints
between words can be introduced. These constraints
are modeled as preferences so the technique is quite
general, and in our view should see wider use in
the community. While their model is a correlation
model rather than a differential model of word use,
we could have employed this technique to handle
shared semantics. Sato and Nakagawa use the PYP
to model word distributions [16], however, they do
not consider word correlations for each topic and
the topic sharing between groups. Our model is thus
a sharing extension of theirs. Furthermore, sparsity
constraints are introduced in [22], Markov constraints
are introduced in [23] in which priors for the topic-
word distribution are defined as Gaussian and en-
coded with domain knowledge. Petterson et al. [24]
proposed an extension of LDA using an informative
prior instead of the symmetric Dirichlet prior for the
topic-word distribution matrices, again without con-
sidering the problem of topic sharing between groups.
Their technique is comparable in goal to Newman et
al. [25], and our technique is basically an application
of the same approach to the context of hierarchical
Bayesian modeling. There are now several useful tools
to model correlations in word use, and some we could
explore in later work. However, our specific goal was
to model differential word use.

Similar to our goal, Paul and Girju’s topic-
aspect model [8] extends Paul’s cross-collection topic
model [2]. It models different aspects within the
dataset by using an extension of the LDA model.
Later they combined this model with a random walk
model to achieve summarizing contrastive viewpoints
in opinionated text [9]. They also extended their topic-
aspect model to achieve sparsity in topic distributions
in [26]. Other recent related work includes Eisenstein
et al.’s sparse additive model [6], which models the
topic-word distribution by adding a set of base distri-
butions; and Wan et al.’s hybrid neural network topic
model [27], which incorporates the neural network to
learn representative features of the input before topic
modeling.

3 BACKGROUND THEORY

In this section we introduce the relevant background
theory of the PYP, the basic notion of the TPYP, and
how we do hierarchical modeling.

3.1 Modeling Topic-Word Distributions with
Pitman-Yor Processes

The Pitman-Yor process and the Dirichlet process [28,
29], as non-parametric Bayesian priors, have become
increasingly popular in statistical machine learning
with applications found in diverse fields such as topic
modeling [11], n-gram language modeling [30, 31],
image segmentation [32] and annotation [33], scene
learning [34], data compression [35], and relational
modeling [36]. The Pitman-Yor process, denoted as
PYP(a, b,H(·)), is a random probability measure ~φ

defined as ~φ =
∑∞
k=1 pkδx∗k(·), where ~p = (p1, p2, ...)

is a probability vector satisfying pk > 0(∀k) and∑∞
k=1 pk = 1, and is generated through a stick-

breaking process [37] or equivalent parameterized
with a discount parameter a and a concentration parame-
ter b, while the samples (atoms) xi are independently
and identically drawn from a base probability measure
H(·) on space X . We use {x∗k} to denote the unique
values among {xi}, and these are referred to as types.

Each draw from a PYP is a probability distribution
with possibly infinitely many types, facilitating the
use of the PYP as a prior in modeling topic-word dis-
tributions. Thus in topic modeling, the base measure
H(·) is a probability distribution over a vocabulary
space, samples xi are words, and pk is the probability
of observing word x∗k in a topic.

Both the Chinese restaurant process (CRP) [38] and
the stick-breaking process [37] are closely related to
the PYP, thus can be used in the representation. Here
we use the former, and the base probability measure
is discrete and finite dimensional, i.e., a probability
distribution over a vocabulary.

The notion of Chinese restaurant here has cus-
tomers entering to be seated at tables, and each table
serves a single dish and is labeled with the dish. In
our case, each topic is associated with a restaurant.
So observed words {xi} are customers in a restaurant.
We will not distinguish these terms in this paper and
will use them interchangeably, e.g., customersM

=words.
Types {x∗k} in a vocabulary are the dishes served at
each table. So observed words in a document that
are the same type are spread over tables labeled with
that type. The seating arrangement is the assignment of
observed words to tables, noting that each table can
only have words of the one type, though other tables
can also have the same type.

A distribution given by a seating arrangement is a
word distribution for a topic (usually called a topic-
word distribution). A specific seating arrangement can
be generated as the follows:
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• The first customer x1 comes into the restaurant,
opens a new table, and orders a dish. The type is
generated from H(·) over a vocabulary, and the
customer x1 is assigned that type.

• All the subsequent customers come into the
restaurant, and choose a table to sit as follows:

– With probability proportional to nt−a to join
an occupied table t labeled with type x∗t (thus
share the dish x∗t ), where nt is the number of
customers currently siting at table t.

– With probability proportional to b + aT to
open a new table (as done for the first cus-
tomer), where T is the number of occupied
tables in the restaurant. A new type x∗T+1 is
thus generated for the new table.

3.2 Transformed Pitman-Yor Processes
The above generating process requires that customers
(i.e., words) sitting at a table should be morpho-
logically the same as the type attached to the table
(i.e., they are the same word). For example, all the
customers sitting at a table labeled with a type “dog”
should have the same morphological form “dog”. This
can be an unrealistic assumption if one wants a more
semantically oriented model of topic-word distribu-
tions. For example, we might expect that words with
similar meaning (e.g., “stock” and “equity”) can be
linked together to obtain more information sharing
so that a table labeled with “equity” can have all its
customers in the form of “stock”, and vice versa. To
address this, we propose a modified version of the
PYP – the transformed Pitman-Yor process, that brings
dependencies among customers/words.

To motivate this, now instead of labeling each table
with a type that has the same morphological form
as its customers, we consider that the morphological
form of a type (of each table) can be different from its
customers if the type and customers are related se-
mantically or by stem. For example, word “dog” cre-
ates a new table, which can be labeled with one of the
following types, “dog”, “dogs”, “doggie”, “puppy”,
and “pooch”. In other words, one can assume “dog”
can be represented as a combination of the five types
with different weights, i.e., a probability vector over
these types. We will show with a data augmentation
technique in Section 5 that this is equivalent to defin-
ing a transformed base probability measure H(·) on
top of the PYP, which is as follows:

TPYP(a, b, P,H(·)) M
= PYP(a, b, (PH)(·)) ,

where P is a linear measure transformation opera-
tor that encodes the transformed probabilities from
one word to other words. In topic-word distribu-
tion modeling, the base probability measure H(·) is
discrete (we can endow it with a Dirichlet prior so
H(·) , ~φ0 ∈MV , where MV denotes the V -dimensional
simplex space) and P becomes a left-stochastic matrix

so that each of its columns sums to one. A similar
idea has been applied to the Dirichlet distribution [39].
Here we extend the idea to the full PYP and also
develop an effective posterior inference algorithm.
Note this is different from the transformed Dirichlet
process [34] in that we do the transformation on the
base measure while they do it on the components in
a mixture model.

The transformed PYP fits our goal well, but we
find performing a full Gibbs sample drawing elements
~φ0 from the base measure H(·) is inefficient and
impractical. Therefore we look for an approach that
can marginalize out ~φ0 so that a collapsed Gibbs
sampler is feasible. However, it is challenging to do
so due to the transformed base measure on the TPYP.
This transformation breaks the conjugacy between
PYP and the prior on ~φ0. As a consequence we
develop a novel algorithm in Section 5 that uses a data
augmentation technique with a re-parameterization
for the hierarchical PYP [40] (see Section 3.4) to make
the marginalization analytically tractable.

3.3 Hierarchical Pitman-Yor Processes

In a typical hierarchical Bayesian topic model, a
discrete probability vector ~φ of finite dimension2 V
(which is the topic-word distribution in this paper)
is sampled from some distribution family F (τ, ~φ0),
where τ is a parameter set, and ~φ0 is a base probability
vector of finite dimension V . In topic modeling, the
Dirichlet distribution is usually used. Others, like the
Dirichlet process and the Pitman-Yor process can also
be included in this family. The generating process
corresponding to this family samples a probability
vector ~φ and then a sequence of data using it. It is
defined as follows:

~φ ∼ F(τ, ~φ0); xi ∼ DiscreteV (~φ) for i = 1, ..., N .

Suppose that a set of N samples is drawn from
a probability distribution ~φ over a discrete and fi-
nite space (In our case, the space is a vocabulary
{1, 2, . . . , V }). A count vector ~m = (m1, . . . ,mV ) can
be constructed from the N samples, where mv is the
number of times type v appears in the N samples,
and

∑
vmv = N . In Dirichlet processes and Pitman-

Yor processes [41], using the Chinese restaurant pro-
cess metaphor described above, an auxiliary variable
called the table count can be introduced. This makes
hierarchical modeling, such as with PYPs feasible,
because these table counts require draws from the
base distribution so are essentially customers in a
restaurant at the next level up the hierarchy. There
is a table count tv for each customer count mv and
it represents the number of “tables” over which the
mv “customers” are spread in the restaurant. Thus

2. This can be infinite dimension, we focus on the finite dimen-
sion case in this paper for simplicity.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, XXX XXX 5

1 ≤ tv ≤ mv and tv = 0 if and only if mv = 0, we
denote their total as t· =

∑
v tv .

When the distribution over probability vectors fol-
lows a Pitman-Yor process which has two param-
eters a, b ∈ τ and the base distribution ~φ0, then
F(τ, ~φ0)

M
= PYP(a, b, ~φ0). In this case, according to [42],

after integrating out ~φ0, Bayesian analysis yields an
augmented marginalised likelihood of

p
(
~x,~t|τ, ~φ0,PYP

)
=

(b|a)t.
(b)N

∏
v

Smvtv,a
(
φ0v
)tv

, (1)

where (b|a)t =
∏t−1
n=0(b+na) denotes the Pochhammer

symbol with increment a, and (b)N = (b|1)N , and
SNM,a is a generalized Stirling number that is readily
tabulated, as presented in [42].

3.4 Re-parameterizing the PYP
There has been existing work such as [31, 42] doing
posterior inference for the PYP based on the marginal-
ized posterior (1). However, the problem of using
MCMC on (1) is that tw’s range {0, ...,mw} is broad
and the contributions from individual data xi seem to
have been lost. As a result, MCMC can sometimes be
slow. To overcome this, a re-parameterization of the
PYP is proposed in [40] where instead of using the
table counts, another set of auxiliary variables {ri}1:N
called table indicators are introduced. For each datum
xi, the indicator ri = 1 when it is the “head (creator) of
its table” (recall the mw data are spread over tw tables,
each table has and only has one “head”), and zero
otherwise. It can be seen that tw =

∑N
i=1 1xi=w1ri=1.

Moreover, if there are tw tables then there must be
exactly tw heads of table, and it is equally likely as
to which data are heads of table, thus the posterior of
the model using this set of auxiliary variables is (from
(1))

p
(
~x,~r|τ, ~φ0,PYP

)
= p

(
~x,~t|τ, ~φ0,PYP

)∏
w

(
mw

tw

)−1
.

(2)
As shown in [40], a block Gibbs sampler for (xi, ri) is
easily derived from (2). Since ~r only appears indirectly
through the table counts ~t and it is uniformly dis-
tributed conditioned on customers on the same table.
We do not need to store the ~r, we just resample an ri
when needed according to the proportion txi/mxi . We
will follow this representation of the PYP in this paper,
not only because it allows more efficient sampling, as
is shown in [40], but also because it allows us to do
data augmentation for the TPYP more easily, as will
be shown below.

4 MODELING WITH TRANSFORMED PYP
We build differential topic models using the popular
topic model LDA [10] as a building block, but with
the TPYP as the prior for the word-topic distributions.

P 1 P Iγ
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φ1

xl1d

zl1d

µd1

α1

φI

xlId

zlId

µdI

αI

· · ·

· · ·

K

L1d

D1

LId

DI

Fig. 2: Graphical model of differential topic modeling.

As illustrated in Figure 1, there are multiple groups
of data. Each group consists of a set of data collected
from a particular source, e.g., news articles from a par-
ticular region. We use a TPYP to model its topic-word
distributions with a group-specific transformation ma-
trix P i. Together the groups share a common base
measure ~φ0. Since data from different sources could
be quite different, we can think of the common base
measure defined on an abstract space, i.e., samples
from this space are not necessarily restricted to be
words, they could be the index of a synonym set.

Notationally, we use i to denote the group index
which ranges over 1..I , d to denote document index
for each group which ranges over 1..Di, l to denote
word index for each document which ranges over
1..Li,d, k to denote topic index which ranges over
1..K, and (w, v) to denote row index and column
index of the transformation matrices {Pi}. Given a
vocabulary of size V , the transformed matrices P i =
(piwv)V×V are sparse matrices. For each word w, we
allow it to be associated with the most similar words
so that each row of Pi will only have a few nonzero
entries. Note that these matrices provide prior in-
formation of how words are correlated and are not
learned by the model (see the experimental part for
the construction). With these indices and dimensions,
data are represented in two sets, which are listed in
the following together with some statistics:
• X: the words in documents, xlid for i = 1..I, d =

1..Di, l = 1..Li,d;
• Z: the latent topic of each word, zlid for i, d, l.
• mikw: number of words w in group i for topic k.
• tikw: the corresponding table count, for use in

Equation (1).
• nidk: the number of words for topic k in docu-

ment d of group i.
• R: the table indicator for each word, ridl for i, d, l.

For simplicity, dots denote marginal sums, e.g., mik. =∑
wmikw and tik. =

∑
w tikw.
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The generating process for our model as illustrated
in Figure 2 (right) is then as follows:

~φ0k ∼ Dirichlet(~γ) k = 1..K

~φik ∼ TPYP(ak, bk, P
i, ~φ0k) i = 1..I, k = 1..K

~µdi ∼ Dirichlet(~αi) i = 1..I, d = 1..Di

zlid ∼ Discrete(~µdi ) i = 1..I, d = 1..Di, l = 1..Li,d

xlid ∼ Discrete(~φizlid
) i = 1..I, d = 1..Di, l = 1..Li,d

Using the Dirichlet-multinomial and PYP-
multinomial conjugacy we can easily marginalize
out ~µdi and ~φik in the above generative process.
Together with the marginal posterior of the PYP
in (2), we obtain the following marginal posterior
p(X,Z,R, ~φ0|~a,~b, ~α1:I , ~γ,P

1:I) =

p(Z|~α1:I)p(~φ
0|~γ)p(X,R|Z,~a,~b, ~φ0,P1:I) , (3)

where p(Z|~α1:I) =
∏I
i=1

∏Di
d=1

BetaK( ~αi+~nid)
BetaK( ~αi)

,

p(~φ0|~γ) =
∏K
k=1

1
BetaV ( ~γk)

∏V
w=1

(
φ0kw

)γk−1,

p(X,R|Z,~a,~b, ~φ0,P1:I) =
∏I
i=1

∏K
k=1

(bk|ak)tik·
(bk)mik·∏V

w=1 S
mikw
tikw,ak

(∑V
v=1 p

i
w,vφ

0
kv

)tikw (
mikw
tikw

)−1.

and BetaK(·) is a function normalizing the K-
dimensional Dirichlet.

Note that the above marginal posterior yields
poor direct MCMC sampling because of the high-
dimensional continuous variable ~φ0 (in our model
it has V dimensions, the vocabulary size). In order
to derive an efficient sampler, we should collapse it
into the posterior as well. In the following section,
we use a data augmentation technique based on the
Multinomial theorem by introducing new auxiliary
variables that enables us to marginalize out ~φ0.

5 POSTERIOR INFERENCE

Now we describe the posterior inference algorithm
for our model. To better illustrate the intuition, we
simplify our notation. Let us first consider when K =
1 and I = 1 in (3), so that we drop out the indexes i
and k, resulting in p(X,R, ~φ0|Z,~a,~b,P, ~γ) =

1

BetaV (~γ)

V∏
w=1

(
φ0w
)γ−1 (b|a)t·

(b)m·

V∏
w=1

Smwtw,a(
mw
tw

) ( V∑
v=1

pw,vφ
0
v

)tw
.

(4)
The idea of our algorithm is to notice that the sum-
mation terms in

∏
w

(∑
v pw,vφ

0
v

)tw can be turned
into products by introducing column indexes vwt for
t = 1...tw as auxiliary variables. To illustrate this,
suppose tw = 2,

p(..., tw, ...) = ...

(∑
v

pw,vφ
0
v

)tw
... =

...

(∑
vw1

pw,vw1φ
0
vw1

)(∑
vw2

pw,vw2φ
0
vw2

)
...

augmenting−−−−−−−→

1 2 3 4 5

w w w

word instances

shared vocabulary

· · ·

· · ·
φ̃0

φ̃i

: head of table

: other word
(customer)

: table

: restaurant

: word association

Figure 1: SNP sequence example.

1

Fig. 3: Illustrates the latent variables associated with
the mikw = 6 words of index w with topic k in
collection i: each table has a single “head of table”
marked in red and there are tikw = 3 in total. The
head must choose a single word in the abstract space
to associate with, its entry is in ~vikw.

p(..., tw, vw1, vw2, ...) = ... pw,vw1
φ0vw1

pw,vw2
φ0vw2

... (5)

The last line augments the probability with the two
separate auxiliary variables vw1, vw2, and note the
augmentation is reversible by a marginalisation step,
see Appendix B for the proof and detail devia-
tion of these variables applying to our full model.
Using this trick (with auxiliary variables {vwt}),
p(X,R, ~φ0|Z,~a,~b,P, ~γ) can be augmented into a prod-
uct form proportional to:

V∏
w=1

(
φ0w
)γ−1 · (b|a)t·

(b)m·

V∏
w=1

Smwtw,a

(
mw

tw

)−1 tw∏
t=1

pw,vwtφ
0
vwt

It is clear that the conjugacy of ~φ0 with its Dirichlet
prior is obtained so that it can be integrated out.

Now apply this data augmentation trick to the full
model (3), and we have the set of auxiliary variables
as {vikwt}3, each associated with word w in topic k,
table t and group i. By carefully inspecting the role of
~vikwt, we can see that:

Remark Using the Chinese restaurant metaphor for
the TPYP in Section 3.2, vikwt denotes the type marked
on table t by customer w for topic k in group i.

The above observation explains why we define TPYP
as a PYP with a transformed base measure, i.e., word
w in topic k of group i is associated with word vikwt in
the global vocabulary, and vikwt itself is random. We
call ~vikw with dimension tikw the word associations, and
the full set denoted as V. Note that now V is closely
connected to the table indicators R: each word xidl has
a table indicator ridl to say if it is “head of its table”. If
the table indicator is 1, it creates the table and marks it
with a type, which is the word association ~vikw (please
refer to (5)). Otherwise it has none. This situation is
represented in Figure 3.

Now defined an auxiliary statistic q̃ikwv as the num-
ber of word associations taking on a particular value
v: q̃ikwv =

∑tikw
t=1 1vikwt=v . The q̃ikwv can be interpreted

as a statistic giving how relevant the word w in group
i and topic k is with respect to the global word v.

3. We put the indexes i and k back into v in the following.
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Interesting results learnt about this in experiments are
shown in Section 6.2.6. Now marginalising out the ~φ0

yields a collapsed posterior with these statistics:

p
(
X,Z,V,R|~a,~b, ~α1:I , ~γ,P

1:I
)

(6)

=

I∏
i=1

V∏
w=1

V∏
v=1

(
piwv
)∑

k q̃
i
kwv

I∏
i=1

Di∏
d=1

BetaK ( ~αi + ~nid)

BetaK ( ~αi)

K∏
k=1

{
I∏
i=1

(bk|ak)tik·
(bk)mik·

∏
v Γ
(
γv +

∑
i

∑
w q̃

i
kwv

)
Γ (
∑
v γv +

∑
i

∑
w tikw)

}
K∏
k=1

{
1

Beta (~γ)

I∏
i=1

V∏
w=1

Smikwtikw,ak

(
mikw

tikw

)−1}
.

Note that the square product
∏V
w=1

∏V
v=1 is only

computed for elements on the sparse matrices Pi,
thus computational complexity is bilinear in V and
the level of sparsity, i.e., O(SW̃i) where W̃i is #types
in group i and S is #words associated with each
vocabulary word (10 in our construction).

Based on this representation, the corresponding
Gibbs sampling algorithm samples latent variables for
the word xidl sequentially for each group i, document
d, and word l. The (zidl, r

i
dl, vikwt) are sampled as a

single block (though vikwt is ignored when ridl = 0).
This step is carried out as follows: first remove counts
from the statistics using Algorithm 1, and then sample
a new topic, table indicator and potentially a word
association using Algorithm 2. The sampling step
given in Algorithm 2 compiles the proportionality of
Equation (6). Note that the table indicators R are
not stored, but the table counts T and the word
associations V are stored.

Algorithm 1 Decrement word xid,l

1: k = zidl, w = xidl
2: Resample the table indicator by generating a

Bernoulli random variable:
ridl ∼ Bernoulli

(
tikw
mikw

)
.

3: Decrease the corresponding statistics mikw, nidk.
4: if ridl ≡ 1 then
5: decrease the corresponding table count tikw,
6: sample t ∼ Uniform(1, · · · , tikw + 1),
7: remove t-th element from the list ~vikw, and
8: decrease qikwvt .
9: end if

5.1 Handling Hyperparameters
For parameters ak, bk, one way is to introduce
Gamma, Beta, and Bernoulli variables to sample both,
as was done by Teh [30]. However, this requires
recording the number of customers on each table and
could be expensive. The other way is to fix ak > 0
and use an adaptive rejection sampler to sample bk’s,
as was done by Du et al. [20]. We implemented both
methods and used the second in these experiments as

Algorithm 2 Sample word xid,l

1: For each k, calculate the following proportionali-
ties:
• p(zidl = k, ridl = 0|others):

∝ αik + nidk
bk +mik·

mikw − tikw + 1

mikw + 1

Smikw+1
tikw,ak

Smikwtikw,ak

.

• p(zidl = k, ridl = 1, vikwt = v|others):

∝ piwv (αik + nidk) bk+aktik·bk+mik·
tikw+1
mikw+1

γv+
∑
i

∑
w q

i
kwv∑

v′γ
v′

+
∑
i

∑
w tikw

S
mikw+1

tikw+1,ak

S
mikw
tikw,ak

.

2: Jointly sample zidl, ridl and vikwt according to
these probabilities.

3: Increase the counts of the statistics mikw and nidk.

4: if ridl ≡ 1 then
5: increase the counts of the statistics tikw and

qikwv , and add v to the list ~vikw.
6: end if

it produced better training likelihoods. For the Dirich-
let parameters ~γ and ~αi, we consider the symmetric
case and optimize them using the Newton-Raphson
method [43]. They tend to have focused posteriors and
thus optimization is quite adequate.

5.2 Variational Inference
In addition to the Gibbs sampling algorithm devel-
oped above, another possibility for posterior inference
is to use variational inference technique [44]. We de-
veloped two hybrid Gibbs and variational algorithms
for the model. See Appendix A for details of the
development and Appendix C for the corresponding
comparisons. The main technique is to use the Jessen’s
inequality to upper bound the power term in the
likelihood (3).

6 EXPERIMENTS

We tested our models on a variety of datasets, includ-
ing six text datasets, one natural image dataset and
one handwritten digit dataset. We will first give some
illustrations in the next section.

6.1 Illustrations
First, by thresholding the variance parameter (rep-
resented as bk in the definition of PYP, the larger,
the more similar the topic pair is), our model auto-
matically aligns some topics between groups, while
also leaves some other topics effectively unaligned.
Figure 4 shows an example of different issues dis-
covered by our model from two blog media, Daily
Kos and Right Wing News. This dataset is described
later, and denoted BD. For the paired topics in the
lower left of the figure, seemingly on policy issues,
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Daily Kos versusRight Wing News

Fig. 4: An example of topic differences between the blogs of Daily Kos (green boxes, size proportional to the
frequency of the topic), Democrats, and Right Wing News (red boxes), Republicans, best viewed in color. The
arcs represent the similarity strength of topic pairs. Word sizes are proportional to their frequencies.

the Democrat group is concerned with global issues,
the economy, and climate and change, while the
Republican group emphasizes government, income,
Americans and taxes. It is also interesting to see the
Republicans discussing issues to do with family and
life (right, second from the top) and energy and oil
(middle, bottom) whereas the Democrats have no
comparable topics.

Second, note that our differential topic model de-
fines a hierarchical structure on topic-word distribu-
tions. Table 1 shows an example of the topic hierarchy
learned on a Reuters News dataset GENT consisting of
6 groups, which is described below. It is interesting
to see that for the general topic with concentration
b = 4958, the six children topics across the different
regions are almost identical. For the “movie star”
topic with concentration b = 103, which means the
children topics vary across the different regions, we
can see the regional focus for movie stars: Cannes in
Europe, the Oscars in the USA, and the movie “Evita”
in South America. A figure showing more interesting
topic pairs can be found in Appendix C. Note we
have also tried the TAM model [8] for these two
illustrations but found much less interpretable topics,
thus we do not show the results here.

6.2 Topic Modeling in Text
6.2.1 Datasets
For these experiments, we extracted three datasets
from the Reuters RCV1 collection4 about disasters, en-

4. Reuters Corpus, Volume 1, English language, 1996-08-20 to
1997-08-19 (Release date 2000-11-03).

tertainment and politics, the Reuters categories GDIS,
GENT and GPOL respectively. Sentences were parsed
with the C&C Parser5, then lemmatised and function
words discarded. The lemmas were then readily used
with the transformation matrices below. To divide
the three Reuters datasets into groups, we split them
into 6 groups according to their location, i.e., Middle
Asia, Africa, South America, North America, Europe,
East Asia and Oceania. Articles from multiple regions
are multiply included. GDIS has a vocabulary of size
39534, with 1508, 443, 1315, 1833, 1580, 2418 docu-
ments in each group. The GENT dataset has 43990
words in the vocabulary, 308, 78, 285, 1413, 348,
1694 documents in each group. While the biggest
GPOL dataset has 109586 words in the vocabulary and
8464, 3227, 4033, 14593, 5517, 9339 documents in each
group. A typical document is 200–400 words.

We also used the political blog data from [45], but
only used the 9560 main blog entries by “Carpetbag-
ger Report”, “Daily Kos”, “Matthew Yglesias”, “Red
State” and “Right Wing News”, removing comments.
This had already been segmented and tokenised so
we discarded words appearing less than 5 times or
more than 9,500 times in total. Remaining was a
vocabulary of size 18038 with 1201, 2599, 1828, 2485
and 1447 blogs entries respectively in the five blogs.
This dataset is denoted as BD.

Finally we crawled and parsed the abstracts for
the Journal of Machine Learning Research volumes 1–
11, the International Machine Learning Conference years
2007–2011, and IEEE Trans. of PAMI 2006-2011. Simple

5. http://svn.ask.it.usyd.edu.au/trac/candc
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TABLE 1: Two topic hierarchies for GENT dataset. The left most column of each topic is the master topic, while
the others correspond to topics in the six region. Values of b reflects the similarity of the region topics.

Global Middle East Africa South America Europe USA East Asia&Oceania
Topic 1: b = 103

stars film government film film best film
movie films national movie festival film films

star bombay circumcision Evita films actor festival
rupees Somalia Madonna best best actress Cannes
venice cinema practice Peron director Oscar best

president India circumcised Argentine Cannes awards director
script Inkatha director actor won shine

Topic 4: b = 4958
years years years years years years years
life life life time time life life

time time time life life time time
world work world work world world world
work book work world book show show
book world book book made made made

home young year work work work

tokenisation was done (splitting on spaces and punc-
tuation, case ignored, leaving contiguous letters and
numbers) to create words. Stop-words were discarded
as well as words appearing less than 5 times or more
than 2900 times. This resulted in a vocabulary of size
4660 with 818, 765 and 1108 documents respectively.
This is denoted as MLJ.

Note that we further tokenised and also leamma-
tised the GDIS, GENT and GPOL datasets, thus we
have in total 8 datasets for the experiments. In the
following we use postfix “cc” to denote the datasets
with tokenisation and postfix “ccp” to denote those
with lemmatisation assisted by the C&C Parser.

6.2.2 Transformation Matrices

We constructed two different transformation matrices.
First, we ran a sliding window of size 20 along
the full text of entries in the Wikipedia of Decem-
ber 2011 (discarding tables, category, list and dis-
ambiguation pages)6. Co-occurrence statistics were
then computed and only the top 10 pairs were kept
for each word in order to introduce sparsity for
the transformation matrices, and a uniform proba-
bility given to the 10 or less alternatives. This ma-
trix is labeled co. Second, Ted Pedersen’s Perl pack-
age WordNet::Similarity::vector was used to
compute the geometric mean of similarity between
word lemmas, and those less than 0.2 were discarded.
This matrix is labeled wn.

Specifically, for each word w in the local vocabu-
lary of group i, we looked for the 10 most related
words (v1, · · · , v10) from the global vocabulary, we
then filled in the entries {(w, v1), · · · , (w, v10)} of the
transformation matrix P i with their word correlation
values. It can be seen that by doing this, each group
would statistically focus on its local vocabulary but
can also enjoy the global information sharing. Note

6. Using the wex2link and linkCoco programs in
https://forge.nicta.com.au/projects/dca-bags.

we built the transformation matrices on the training
sets for fair comparison.

6.2.3 Measuring Perplexity
Perplexity was measured on a test set, 20% of the
original data sets, and was done using the standard
dictionary hold-out method (50% of document words
were held out when estimating topic probabilities)
[46] known to be unbiased. The results are presented
as the average over six runs for each dataset with
different initializations.

6.2.4 Implementation
We compared our model with a number of baselines,
which are listed below. All algorithms except ccLDA
are implemented in C, have been extensively tested,
and reviewed by multiple coders. The models we
compare are (see Appendix for more model compar-
ison including the variational inference):
• TI: the full Gibbs table indicator sampler for the

TPYP.
• TII: a degenerated TI with identity transforma-

tion matrix I .
• CS: the collapsed Gibbs sampler for the
HPYP [47].

• SS: a variant of the CRP based algorithm, orig-
inally the sampling by direct assignment
algorithm proposed for the HDP [11].

• PYP: use PYP as the prior for the topic-word
distributions for each group separately [16].

• ccLDA: cross-collection topic models [2].
• LDA: plain LDA [10] trained on each group.

Note only the first algorithm deals with non-identity
transformation matrices, thus have incorporated word
correlation information via the transformation ma-
trices, while the others do not. Since we construct
the transformation matrix in two ways, we will use
subscripts ‘co’ and ‘wn’ to denote the algorithms using
the matrices constructed from Wikipedia and Word-
Net, respectively. All the algorithms were run using
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Fig. 5: Some word association structures on MLJ
dataset. The words in the eclipses are from the global
vocabulary, each corresponds to a set of words (in
the colored boxes) in each group, represented by the
statistics {q̃ikwv} in (6), the numbers following the
words represent the strength of the correlations in
range [0, 1]. Best viewed in color.

2000 Gibbs/variational cycles as burn in, which was
adequate for convergence in the experiments, and 100
samples were collected for the perplexity calculation.
The hyperpameters were also sampled, but with the
discount parameter a set to 0.7, known to perform well
for topic-word distribution modeling in text.

6.2.5 Result: Topic Alignment

First, due to the nature of our model, it does automatic
alignment of topic, performing this task as well as a
standard baseline. See Appendix C for details.

6.2.6 Result: Word Associations

In our inference algorithm we have introduced the
auxiliary variables called word associations, and de-
fined an auxiliary statistic q̃ikwv derived from word
associations. From the definition, we can think of q̃ikwv
as how relevant word w in group i for topic k is to
the word v in the global vocabulary, the larger, the
more relevant. Fig. 5 shows an example of these word
associations trained on the MLJ dataset and picked
from a subset of the words within one topic. It is inter-
esting to see that we can also tell the topic difference
based on these relations. For example, for the word
“computing”, words associated in ICML are “parallel”
and “ubiquitous”, while in JMLR and TPAMI, they
focus on “distributed” and “parallel”, respectively.

6.2.7 Result: Perplexity Comparison

We first compare the 7 Gibbs sampling based algo-
rithms described in Section 6.2 on the 5 datasets, the
variational based methods are not shown here because
of their bad performance. We use the transformation
matrices constructed from Wikipedia for our model.

The results are shown in Figure 6. The main observa-
tions are:
• TI performs significantly better than other al-

gorithms. This means semantic information is
important, and can be neatly dealt with by the
proposed TPYP.

• TII is consistently better than the other sampler
for the PYP, e.g., CS and SS, which shows the
superiority of our table indicator sampling.

• ccLDA is worse than TII (thus TI) in most cases,
and generally better than the other methods,
except in the BD and GPOL datasets where it
performs poorly.

• In the MLJ dataset TI is slightly worse than
TII and ccLDA. This might because on the very
specific subject domain of machine learning, the
transformation matrices did not help.

6.2.8 Result: Full Comparison
This section shows the performance of different mod-
els under different experimental settings, e.g., different
hyperparameters, different transformation matrices
and datasets with different preprocessing, etc.. The
following summarises these results.

First, we claimed that the Pitman-Yor process
should be better as a model of word probability
vectors than the Dirichlet process. For this series
of experiments we fix discount a = 0.70 as the
approximate value known to perform well in topic-
word distribution modeling. The claim are confirmed
by Figure 7(a). Second, we claimed that the new
table indicator sampler should perform better than
the original sampler used by Teh et al. [11]. This is
confirmed in Figure 7(b). Third, we expect that by
introducing semantic information into the model, TI
should perform better than the plain PYP–TII. This is
confirmed by Figure 7(c).

Finally, a summary of all the algorithms and
datasets with different transformation matrix settings
is shown in Appendix D.

6.3 Topic Modeling in Natural Images
We also carried out a pilot evaluation of differential
topic modeling on image datasets. Two example pairs
of contrasting image collections are taken from Ima-
geNet [48], i.e., one for mango versus pineapple and the
other bike versus car. We turned each image into bag-
of-words representation by using the densely sampled
bag-of-visual-words [48] to describe 300 images from
each collection, where 128-dimensional SIFT descrip-
tors are extracted from evenly spaced image patches
and then quantized into 1000 visual words with K-
means. Refer to [48] for detailed descriptions. We ran
TII with 20 topics in this experiment since it was
found to yield well-aligned topics. Other settings have
similar results. Figure 8 shows one example aligned
topic for bikes versus cars. Each topic is illustrated as
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Fig. 6: Perplexities versus #topics on the five datasets, best viewed in color.
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Fig. 7: Comparison of test perplexity for different algorithms and datasets. Each point corresponds to one
parameter setting. “A-B”in the legend indicates the algorithm “A” and data set “B”, while subscripts “ccp”
and “cc” mean the dataset with and without tokenisation preprocessing, “wn” and “co” mean the 2 kinds of
transformation matrices. Postscript “-1” in (c) means the original datasets without stop word removal.

the average of image patches that belong to the top 49
visual words (top). We can see from Figure 8 that our
model captures the shared structure in different cat-
egories, i.e., patches with horizontal structures (top),
found on both bikes and cars (bottom). Rather than
using the perplexity measure, we validated the ability
of TII to identify objects in the different groups,
since these groups tended to have similar background,
but remarkably different foreground objects. We mea-
sured the ratio of the number of visual words in the
same topic that fell within the object bounding boxes
and those outside, we called this ration localization
ratio for short. Figure 8 (right) shows the results in
comparison with LDA. We can see that TII has higher
localization ratios than LDA, especially over the first

few most discriminating topics.

6.4 Topic Modeling in Handwritten Digits
To further illustrate our model with images, we tested
it on the BinaryAlphaDigs dataset7. It contains bi-
nary 20×16 digits of “0”–“9” and capital “A”–“Z” and
there are 39 examples for each class. The images are
represented by binary matrices; each pixel is regarded
as one word in the vocabulary, a pixel with value
“1” indicates existing of this word in the correspond-
ing image, while “0” indicates absent. Furthermore,
we divided the whole dataset into 36 groups, each
corresponded to one class. Different from the above

7. http://www.cs.toronto.edu/∼roweis/data.html

http://www.cs.toronto.edu/~roweis/data.html
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Fig. 8: Results on image datasets. Left: an example
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images. Right: object localization. x-axis: #topics con-
sidered; y-axis: average localization ratio over topics
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average scores. Best viewed in color.

experiment, in this setting, each word indicates the
existence or absent of a pixel in the corresponding
location, thus a topic can be visualized using an
image, with pixel values equal to the weights of the
corresponding words in this topic. Because it was not
straightforward to construct a suitable transformation
matrix for this dataset, we used the version TII for
testing. Instead of showing the perplexities (which
we found comparative for all the models), we show
the specific topics learned by our model and LDA in
Fig. 9. We can see from the figure that TII manages to
learn the sharing structures among all the characters
while each of them varies smoothly between groups.
In particular, we see that the first topic in TII rep-
resents the shapes of different characters, while the
other are shared variations among all characters. This
is not observed in the topics learned by LDA, which
seems to be some random patches.

6.5 Document Classification

We further evaluated our model in the task of doc-
ument classification. The most popular technique
for this task currently is the support vector machine
(SVM) [49], which usually achieves the state-of-
the-art. Some probabilistic models such as [6] can
achieve comparable performance with SVM in par-
ticular datasets. Therefore, we compare our model
TI with SVM on the BD, Blog and MLJ datasets.
BD and MLJ are the same dataset used in Sec-
tion 6.2 and Blog contains six political blogs about
the U.S. presidential election [6]. After training our
model, we did the classification by computing the
marginal likelihoods of the testing documents, where
we used the shared global topic-word distributions ~φ0k
to estimate the topic distribution ~θd for each testing
document d (by running a standard LDA inference
with topic-word distributions fixed as ~φ0k), we then
simply assigned the testing document to group c =

TABLE 2: Classification accuracies on the three
datasets. The second row in the “TI” entry repre-
sents the highest accuracies obtained during the runs.
SVM L means SVM classifier with linear kernel, while
SVM R means SVM with RBF kernel. LDA+SVM
means SVM classifier with LDA features.

Datasets BD Blog MLJ

TI
81.58%± 0.9% 73.54%± 0.8% 80.98%± 0.8%

(84.48%) (75.17%) (83.00)%

TII
45.03%± 1.2% 71.52%± 2.1% 42.40%± 3.0%

(47.18%) (75.80%) (50.01)%
SVM L 78.35% 69.59% 71.92%
SVM R 78.35% 70.40% 71.91%

LDA + SVM 65.13% 70.63% 69.27%

arg max
i

∑Nd
`=1

∑K
k=1 θdkφ

i
k`, where Nd is the number

of words in d. We find that TI benefits from the trans-
formation matrices, and tends to have more stable
accuracies when the number of topic is small. We
thus set the number of topics to be 5. Moreover, we
observed fast convergence of the testing accuracy for
TI (usually within 50 iterations), thus we reported the
results obtained between 50 and 200 iterations. Other
hyperparameters were set as in previous experiments.
For SVM, we represented each document as a td-idf
vector [50] and used the libSVM implementation [51]
with linear and RBF kernels, where we did a 5-fold
cross validation to select the optimal parameters us-
ing the provided function. Finally, we also compared
our model with the SVM with features learned from
LDA. We followed [6] in partitioning the dataset into
training and testing sets for the Blog dataset. For
the other two, we randomly took 80% of the whole
dataset for training and the rest for testing. Table 2
shows the results of classification accuracy. The result
for SVM L is comparable to that in [6] where they
report obtaining 69.6% with SAGE. We can see from
the results that TI significantly outperforms SVM and
SAGE, demonstrating the differential ability of our
model. On the other hand, TII with identity transfor-
mation matrices fails to compete with SVM in most
cases. Furthermore, we observed worse performance
of the SVM with LDA features than the simple SVM
with sparse tf-idf features, indicating the simple LDA
model might not be a good one for classification tasks.

7 CONCLUSION

We developed a hierarchical topic model for dif-
ferential analysis to be applied to comparable data
collections as a means to understand similarities and
differences. The Poisson Dirichlet Process (PYP) was
used to manage a hierarchy of topics across collec-
tions, rather than using the “shared and distinct”
word vectors of earlier work. The variance parameters
of the PYP then can control the level of sharing across
collections and also allow unpaired topics. Moreover,
we proposed the Transformed PYP (TPYP), a type
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Fig. 9: 10 topics for the three groups “V”, “X” and “Z” from TII (left) and LDA (right). The first column contains
random samples for three groups, the others are the corresponding 10 topics. The second column of TII topics
reveals different structures among the characters while the other columns represent shared structures.

of PYP with transformed based measures, and de-
veloped an efficient inference algorithm to deal with
the non-conjugacy of the model using an auxiliary
variable trick and a table indicator representation for
the hierarchical PYP.

Experimental results on both text and images show
significant improvement compared to existing algo-
rithms in terms of test perplexity, and illustrative ex-
amples demonstrate the application. Finally, we have
show our model outperforms the state-of-the-art for
some document classification tasks.
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