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Abstract
A new framework for topic modeling is devel-
oped, based on deep graphical models, where
interactions between topics are inferred through
deep latent binary hierarchies. The proposed
multi-layer model employs a deep sigmoid be-
lief network or restricted Boltzmann machine,
the bottom binary layer of which selects topics
for use in a Poisson factor analysis model. Under
this setting, topics live on the bottom layer of the
model, while the deep specification serves as a
flexible prior for revealing topic structure. Scal-
able inference algorithms are derived by applying
Bayesian conditional density filtering algorithm,
in addition to extending recently proposed work
on stochastic gradient thermostats. Experimental
results on several corpora show that the proposed
approach readily handles very large collections
of text documents, infers structured topic repre-
sentations, and obtains superior test perplexities
when compared with related models.

1. Introduction
Considerable research effort has been devoted to develop-
ing probabilistic models for documents. In the context of
topic modeling, a popular approach is latent Dirichlet allo-
cation (LDA) (Blei et al., 2003), a directed graphical model
that aims to discover latent topics (word distributions) in
collections of documents that are represented in bag-of-
words form. Recent work focuses on linking observed
word counts in a document to latent nonnegative matrix
factorization, via a Poisson distribution, termed Poisson
factor analysis (PFA) (Zhou et al., 2012). Different choices
of priors on the latent nonnegative matrix factorization can

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

lead to equivalent marginal distributions to LDA, as well
as to the Focused Topic Model (FTM) of Williamson et al.
(2010).

Additionally, hierarchical (“deep”) tree-structured topic
models have been developed by using structured Bayesian
nonparametric priors, including the nested Chinese restau-
rant process (nCRP) (Blei et al., 2004), and the recently
proposed nested hierarchical Dirichlet process (nHDP)
(Paisley et al., 2015). The nCRP is limited because it re-
quires that each document select topics from a single path
in a tree, while the nHDP allows each document to access
the entire tree by defining priors over a base tree. However,
the relationship between two paths in these models is only
explicitly given on shared parent nodes.

Another alternative for topic modeling is to develop undi-
rected graphical models, such as the Replicated Soft-
max Model (RSM) (Salakhutdinov & Hinton, 2009a),
based on a generalization of the restricted Boltzmann ma-
chine (RBM) (Hinton, 2002). Also closely related to the
RBM is the neural autoregressive density estimator (Doc-
NADE) (Larochelle & Lauly, 2012), a neural-network-
based method, that has been shown to outperform the RSM.

Deep models, such as the Deep Belief Network (DBN)
(Hinton et al., 2006), the Deep Boltzmann Machine (DBM)
(Salakhutdinov & Hinton, 2009b), and layered Bayesian
networks (Kingma & Welling, 2014; Mnih & Gregor, 2014;
Danilo et al., 2014; Gan et al., 2015) are becoming popular,
as they consistently obtain state-of-the-art performances on
a variety of machine learning tasks. A popular theme in
this direction of work is to extend shallow topic models to
deep counterparts. In such a setting, documents arise from
a cascade of layers of latent variables. For instance, DBNs
and DBMs have been generalized to model documents by
utilizing the RBM as a building block (Hinton & Salakhut-
dinov, 2011; Srivastava et al., 2013).

Combining ideas from traditional Bayesian topic modeling
and deep models, we propose a new deep generative model
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for topic modeling, in which the Bayesian PFA is employed
to interact with the data at the bottom layer, while the Sig-
moid Belief Network (SBN) (Neal, 1992), a directed graph-
ical model closely related to the RBM, is utilized to buildup
binary hierarchies. Furthermore, our model is not necessar-
ily restricted to SBN modules, and it is shown how an undi-
rected model such as the RBM can be incorporated into the
framework as well.

Compared with the original DBN and DBM, our proposed
model: (i) tends to infer a more compact representation of
the data, due to the “explaining away” effect described by
Hinton et al. (2006); (ii) allows for more direct exploration
of the effect of a single deep hidden node through ancestral
sampling; and (iii) can be easily incorporated into larger
probabilistic models in a modular fashion. Compared with
the nCRP and nHDP, our proposed model only infers top-
ics at the bottom layer, but defines a flexible prior to cap-
ture high-order relationships between topics via a deep bi-
nary hierarchical structure. In practice, this translates into
better perplexities and very interesting topic correlations,
although not in a tree representation as in nCRP or nHDP.

Another important contribution we present is to develop
two scalable Bayesian learning algorithms for our model:
one based on the recently proposed Bayesian conditional
density filtering (BCDF) algorithm (Guhaniyogi et al.,
2014), and the other based on the stochastic gradient
Nóse-Hoover thermostats (SGNHT) algorithm (Ding et al.,
2014). We extend the SGNHT by introducing additional
thermostat variables into the dynamic system, increasing
the stability and convergence when compared to the origi-
nal SGNHT algorithm.

2. Model Formulation
2.1. Poisson Factor Analysis

Given a discrete matrix X ∈ ZP×N+ containing counts from
N documents and P words, Poisson factor analysis (Zhou
et al., 2012) assumes the entries of X are summations of
K < ∞ latent counts, each produced by a latent factor (in
the case of topic modeling, a hidden topic). We represent
X using the following factor model

X = Pois(Φ(Θ ◦H(1))) , (1)

where Φ is the factor loading matrix. Each column of Φ,
φk ∈ 4P , encodes the relative importance of each word in
topic k, with4P representing the P -dimensional simplex.
Θ ∈ RK×N+ is the factor score matrix. Each column, θn,
contains relative topic intensities specific to document n.
H(1) ∈ {0, 1}K×N is a latent binary feature matrix. Each
column, h(1)

n , defines a sparse set of topics associated with
each document. For the single-layer PFA, the use of the
superscript (1) on h(1)

n is unnecessary; we introduce this

notation here in preparation for the subsequent deep model,
for which h(1)

n will correspond to the associated first-layer
latent binary units. The symbol ◦ represents the Hadamard,
or element-wise multiplication of two matrices. The factor
scores for document n are θn ◦ h(1)

n .

A wide variety of algorithms have been developed by con-
structing PFAs with different prior specifications (Zhou &
Carin, 2015). If H(1) is an all-ones matrix, LDA is recov-
ered from (1) by employing Dirichlet priors on φk and θn,
for k = 1, . . . ,K and n = 1, . . . , N , respectively. This
version of LDA is referred to as Dir-PFA by Zhou et al.
(2012). For our proposed model, we construct PFAs by
placing Dirichlet priors on φk and gamma priors on θn.
This is summarized as,

xpn =
∑K
k=1 xpnk , xpnk ∼ Pois(φpkθknh

(1)
kn ) , (2)

with priors specified as φk ∼ Dir(aφ, . . . , aφ), θkn ∼
Gamma(rk, pn/(1 − pn)), rk ∼ Gamma(γ0, 1/c0), and
γ0 ∼ Gamma(e0, 1/f0).

The novelty in our model comes from the prior for the bi-
nary feature matrix H(1). Previously, Zhou & Carin (2015)
proposed a beta-Bernoulli process prior on the columns
{h(1)

n }Nn=1 with pn = 0.5. This model was called NB-
FTM, tightly related with the focused topic model (FTM)
(Williamson et al., 2010). In the work presented here, we
construct H(1) from a deep structure based on the SBN (or
RBM) with binary latent units.

2.2. Structured Priors on the Latent Binary Matrix

The second part of our model consists of a deep structure
for a binary hierarchy. To this end, we employ the SBN
(or RBM). In the following we start by describing a single-
layer model with SBN (or RBM), and then we generalize it
to a deep model.

Modeling with the SBN We assume the latent vector for
document n, h(1)

n ∈ {0, 1}K1 . This matches most of the
RBM and SBN literature, for which typically the observed
data are binary. In our model, however, these binary vari-
ables are not observed; they are hidden and related to the
data through the PFA in (2).

To construct a structured prior, we define another hidden
set of units h(2)

n ∈ {0, 1}K2 placed at a layer “above” h(1)
n .

The layers are related through a set of weights defined by
the matrix W(1) = [w

(1)
1 . . . w

(1)
K1

]> ∈ RK1×K2 . An
SBN model has the generative process,

p(h
(2)
k2n

= 1) = σ(c
(2)
k2

) , (3)

p(h
(1)
k1n

= 1|h(2)
n ) = σ

(
(w

(1)
k1

)>h(1)
n + c

(1)
k1

)
, (4)

where h(1)k1n and h
(2)
k2n

are elements of h(1)
n and h(2)

n , re-
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spectively. The function σ(x) , 1/(1+e−x) is the logistic
function, and c(1)k1 and c(2)k2 are bias terms. The global pa-
rameters W(1) are used to characterize the mapping from
h(2)
n to h(1)

n for all documents.

Modeling with the RBM The SBN is closely related to
the RBM, which is a Markov random field with the same
bipartite structure as the SBN. The RBM defines a distri-
bution over a binary vector that is proportional to the expo-
nential of its energy, defined (using the same notation as in
SBN) as E(h(1)

n ,h(2)
n ) =

−(h(1)
n )>c(1) − (h(1)

n )>W(1)h(2)
n − (h(2)

n )>c(2) . (5)

In the experiments we consider both the deep SBN and
deep RBM for representation of the latent binary units,
which are connected to topic usage in a given document.

Remark An important benefit of SBNs over RBMs is
that in the former sparsity or shrinkage priors can be read-
ily imposed on the global parameters W(1), and fully
Bayesian inference can be implemented as shown in Gan
et al. (2015). The RBM relies on an approximation tech-
nique known as contrastive divergence (Hinton, 2002), for
which prior specification for model parameters is limited.

2.3. Deep Architecture for Topic Modeling

Specifying a prior distribution onh(2)
n as in (3) might be too

restrictive in some cases. Alternatively, we can use another
SBN prior for h(2)

n , in fact, we can add multiple layers as
in Gan et al. (2015) to obtain a deep architecture,

p(h(1)
n , . . . ,h(L)

n ) = p(h(L)
n )

∏L
`=2 p(h

(`−1)
n |h(`)

n ), (6)

where L is the number of layers, p(h(L)
n ) is the prior for

the top layer defined as in (3), p(h(`−1)
n |h(`)

n ) is defined
as in (4), and the weights W(`) ∈ RK`×K`+1 and biases
c(`) ∈ RK` are omitted from the conditional distributions
to keep notation uncluttered. A similar deep architecture
may be designed for the RBM (Salakhutdinov & Hinton,
2009b).

Instead of employing the beta-Bernoulli specification for
h(1)
n as in the NB-FTM, which assumes independent topic

usage probabilities, we propose using (6) instead as the
prior for h(1)

n , thus

p(xn,hn) = p(xn|h(1)
n )p(h(1)

n , . . . ,h(L)
n ) , (7)

where hn , {h(1)
n , . . . ,h(L)

n }, and p(xn|h(1)
n ) as in (2).

The prior p(h(1)
n |h(2)

n . . . ,h(L)
n ) can be seen as a flexible

prior distribution over binary vectors that encodes high-
order interactions across elements of h(1)

n . The graphi-
cal model for our model, Deep Poisson Factor Analysis
(DPFA) is shown in Figure 1.
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In the experiments we consider both the deep SBN and
deep RBM for representation of the latent binary units,
which are connected to topic usage in a given document.

Discussion An important benefit of SBNs over RBMs
is that in the former sparsity or shrinkage priors can be
readily imposed on the global parameters W(1), and fully
Bayesian inference can be implemented as shown in Gan
et al. (2015). The RBM relies on an approximation tech-
nique known as contrastive divergence (Hinton, 2002), for
which prior specification for the model parameters is lim-
ited.

2.3. Deep Architecture for Topic Modeling

Specifying a prior distribution onh(2)
n as in (3) might be too

restrictive in some cases. Alternatively, we can use another
SBN prior for h(2)

n , in fact, we can add multiple layers as
in Gan et al. (2015) to obtain a deep architecture,

p(h(1)
n , . . . ,h(L)

n ) = p(h(L)
n )

∏L
`=2 p(h

(`−1)
n |h(`)

n ), (6)

where L is the number of layers, p(h(L)
n ) is the prior for the

top layer defined as in (3), p(h(`−1)
n |h(`)

n ) is defined in (4),
and the weights W(`) ∈ RK`×K`+1 and biases c(`) ∈ RK`

are omitted from the conditional distributions to keep no-
tation uncluttered. A similar deep architecture may be de-
signed for the RBM (Salakhutdinov & Hinton, 2009b).

Instead of employing the beta-Bernoulli specification for
h(1)
n as in the NB-FTM, which assumes independent topic

usage probabilities, we propose using (6) instead as the
prior for h(1)

n , thus

p(xn,hn) = p(xn|h(1)
n )p(h(1)

n , . . . ,h(L)
n ) , (7)

where hn , {h(1)
n , . . . ,h(L)

n }, and p(xn|h(1)
n ) as in (2).

The prior p(h(1)
n |h(2)

n . . . ,h(L)
n ) can be seen as a flexible

prior distribution over binary vectors that encodes high-
order interactions across elements of h(1)

n . The graphi-
cal model for our model, Deep Poisson Factor Analysis
(DPFA) is shown in Figure 1.

3. Scalable Posterior Inference
We focus on learning our model with fully Bayesian al-
gorithms, however, emerging large-scale corpora prohibit
standard MCMC inference algorithms to be applied di-
rectly. For example, in the experiments, we consider the
RCV1-v2 and the Wikipedia corpora, which contain about
800K and 10M documents, respectively. Therefore, fast
algorithms for big Bayesian learning are essential. While
parallel algorithms based on distributed architectures such
as the parameter server (Ho et al., 2013; Li et al., 2014)
are popular choices, in the work presented here, we focus

h(1)
n

h(2)
n

h(3)
n

xn

θn
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W(2)
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φk

γ0

aφ
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Figure 1. Graphical model for the Deep Poisson Factor Analysis
with three layers of hidden binary hierarchies. The directed binary
hierarchy may be replaced by a deep Boltzmann machine.

on another direction for scaling up inference by stochas-
tic algorithms, where mini-batches instead of the whole
dataset are utilized in each iteration of the algorithms.
Specifically, we develop two stochastic Bayesian inference
algorithms based on Bayesian conditional density filter-
ing (Guhaniyogi et al., 2014) and stochastic gradient ther-
mostats (Ding et al., 2014), both of which have theoretical
guarantees in the sense of asymptotical convergence to the
true posterior distribution.

3.1. Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a re-
cently proposed stochastic algorithm for Bayesian online
learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data.
Sampling in BCDF proceeds by drawing from the condi-
tional posterior distributions of model parameters, obtained
by propagating surrogate conditional sufficient statistics
(SCSS). In practice, we repeatedly update the SCSS using
the current mini-batch and draw S samples from the condi-
tional densities using, for example, a Gibbs sampler. This
eliminates the need to load the entire dataset into mem-
ory, and provides computationally cheaper Gibbs updates.
More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce
samples from the correct target posterior asymptotically,
once the entire dataset is seen (Guhaniyogi et al., 2014).

In the learning phase, we are interested in learning the
global parameters Ψg = ({φk}, {rk}, γ0, {W(`), c(`)}).
Denote local variables as Ψl = (Θ,H(`)), and let Sg rep-
resent the SCSS for Ψg , the BCDF algorithm can be sum-
marized in Algorithm 1. Specifically, we need to obtain the
conditional densities, which can be readily derived granted
the full local conjugacy of the proposed model. Using dot
notation to represent marginal sums, e.g., x·nk ,

∑
p xpnk,

we can write the key conditional densities for (2) as (Zhou
& Carin, 2015)
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with three layers of hidden binary hierarchies. The directed binary
hierarchy may be replaced by a deep Boltzmann machine.

3. Scalable Posterior Inference
We focus on learning our model with fully Bayesian al-
gorithms, however, emerging large-scale corpora prohibit
standard MCMC inference algorithms to be applied di-
rectly. For example, in the experiments, we consider the
RCV1-v2 and the Wikipedia corpora, which contain about
800K and 10M documents, respectively. Therefore, fast
algorithms for big Bayesian learning are essential. While
parallel algorithms based on distributed architectures such
as the parameter server (Ho et al., 2013; Li et al., 2014)
are popular choices, in the work presented here, we focus
on another direction for scaling up inference by stochas-
tic algorithms, where mini-batches instead of the whole
dataset are utilized in each iteration of the algorithms.
Specifically, we develop two stochastic Bayesian inference
algorithms based on Bayesian conditional density filter-
ing (Guhaniyogi et al., 2014) and stochastic gradient ther-
mostats (Ding et al., 2014), both of which have theoretical
guarantees in the sense of asymptotical convergence to the
true posterior distribution.

3.1. Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a re-
cently proposed stochastic algorithm for Bayesian online
learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data.
Sampling in BCDF proceeds by drawing from the condi-
tional posterior distributions of model parameters, obtained
by propagating surrogate conditional sufficient statistics
(SCSS). In practice, we repeatedly update the SCSS using
the current mini-batch and draw S samples from the condi-
tional densities using, for example, a Gibbs sampler. This
eliminates the need to load the entire dataset into mem-
ory, and provides computationally cheaper Gibbs updates.
More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce
samples from the correct target posterior asymptotically,
once the entire dataset is seen (Guhaniyogi et al., 2014).

In the learning phase, we are interested in learning the
global parameters Ψg = ({φk}, {rk}, γ0, {W(`), c(`)}).
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Algorithm 1 BCDF algorithm for DPFA.
Input: text documents, i.e., a count matrix X.
Initialize Ψ

(0)
g randomly and set S

(0)
g all to zero.

for t = 1 to∞ do
Get one mini-batch X(t).
Initialize Ψ

(t)
g = Ψ

(t−1)
g , and S

(t)
g = S

(t−1)
g .

Initialize Ψ
(t)
l randomly.

for s = 1 to S do
Gibbs sampling for DPFA on X(t).
Collect samples Ψ1:S

g ,Ψ1:S
l and S1:S

g .
end for
Set Ψ

(t)
g = mean(Ψ1:S

g ), and S
(t)
g = mean(S1:S

g ).
end for

Denote local variables as Ψl = (Θ,H(`)), and let Sg rep-
resent the SCSS for Ψg , the BCDF algorithm can be sum-
marized in Algorithm 1. Specifically, we need to obtain the
conditional densities, which can be readily derived granted
the full local conjugacy of the proposed model. Using dot
notation to represent marginal sums, e.g., x·nk ,

∑
p xpnk,

we can write the key conditional densities for (2) as (Zhou
& Carin, 2015)

xpnk|− ∼Multi(xpn; ζpn1, . . . , ζpnK) ,

φk|− ∼ Dir(aφ + x1·k, . . . , aφ + xP ·k) ,

θkn|− ∼ Gamma(rkh
(1)
kn + x·nk, pn) ,

h
(1)
kn |− ∼ δ(x·nk = 0)Ber

(
π̃kn

π̃kn+(1−πkn)

)
+ δ(x·nk > 0) ,

where π̃kn = πkn(1−pn)rk , πkn = σ((w
(1)
k )>h(2)

n +c
(1)
k ),

and ζpnk ∝ φpkθkn. Additional details are provided in
the Supplementary Material. For the conditional distribu-
tions of W(`) and H(`), we use the same data augmenta-
tion technique as in Gan et al. (2015), where Pólya-Gamma
(PG) variables γ(`)k`n (Polson et al., 2013) are introduced
for hidden unit k` in layer ` corresponding to observa-
tion vn. Specifically, each γ(`)k`n has conditional posterior

PG(1, (w
(`)
k`

)>h(`+1)
n + c

(`)
k`

). If we place a Gaussian prior

N(0, σ2I) onw(`)
k`

, the posterior will still be Gaussian with

covariance matrix Σ
(`)
k`

= [
∑
n γ

(`)
k`n
h(`+1)
n (h(`+1)

n )> +

σ−2I]−1 and mean µ
(`)
k`

= Σ
(`)
k`

[
∑
n(h

(`)
k`n
− 1/2 −

c
(`)
k`
γ
(`)
k`n

)h(`+1)
n ]. Furthermore, for ` > 1, the conditional

distribution of h(`)k`n can be obtained as1

h
(`)
k`n
∼ Bernoulli (σ(dk`n)) , (8)

where

dk`n = (w
(`−1)
·,k` )>h(`−1)

n + (w
(`)
k`

)>h(`+1)
n + c

(`)
k`

− 1

2

∑

k`−1

(
w

(`−1)
k`−1k`

+ γ
(`−1)
k`−1n

(2ψ
\k`
k`−1n

w
(`−1)
k`−1k`

+ (w
(`−1)
k`−1k`

)2)
)
,

1Here and in the rest of the paper, whenever ` > L, h(`)
n is

defined as a zero vector, for conciseness.

and ψ\k`k`−1n
=
∑
k′` 6=k` w

(`−1)
k`−1k′`

h
(`)
k′`n

+ c
(`−1)
k`−1

. Note that

w
(`)
·,k`+1

and w(`)
k`

represents the k`+1th column and the
transpose of the k`th row of W(`), respectively. As can be
seen, the conditional posterior distribution of h(`)k`n is both
related to h(`−1)

n and h(`+1)
n .

3.2. Stochastic gradient thermostats

Our second learning algorithm adopts the recently pro-
posed SGNHT for large scale Bayesian sampling (Ding
et al., 2014), which is more scalable and accurate than
the previous BCDF algorithm. SGNHT generalizes the
stochastic gradient Langevin dynamics (SGLD) (Welling
& Teh, 2011) and the stochastic gradient Hamiltonian
Monte Carlo (SGHMC) (Chen et al., 2014) by introducing
momentum variables into the system, which is adaptively
damped using a thermostat. The thermostat exchanges en-
ergy with the target system (e.g., a Bayesian model) to
maintain a constant temperature; this has the potential ad-
vantage of making the system jump out of local modes eas-
ier and reach the equilibrium state faster (Ding et al., 2014).

Specifically, let Ψg ∈ RM be model parameters2 which
corresponds to the location of particles in a physical sys-
tem, v ∈ RM be the momentum of these particles, which
are driven by stochastic forces f̃ defined as the negative
stochastic gradient (evaluated on a subset of data) of a
Bayesian posterior, e.g., f̃(Ψg) , −∇Ψg Ũ(Ψg), where
Ũ(Ψg) is the negative log-posterior of a Bayesian model.
The motion of the particles in the system are then defined
by the following stochastic differential equations:

dΨg = vdt , dv = f̃(Ψg)dt− ξvdt+
√
DdW ,

dξ =
(

1
M v

Tv − 1
)
dt , (9)

where t indexes time,W is the standard Wiener process, ξ
is called the thermostat variable which ensures the system
temperature to be constant, and D is the variance of the
total noise injected into the system and is assumed to be
constant.

It can be shown that under certain assumptions, the equi-
librium distribution of system (9) corresponds to the model
posterior (Ding et al., 2014). As a result, the SDE (9) can be
solved by using the Euler-Maruyama scheme (Tuckerman,
2010), where a mini-batch of the whole data is used to eval-
uate the stochastic gradient f̃ . Note only one thermostat
variable ξ is used in the SDE system (9); this is not robust
enough to control the system temperature well because of
the high dimensionality of Ψg . Based on the techniques in
(Ding et al., 2014), we extend the SGNHT by introducing

2With a little abuse of notation but for conciseness, we use Ψg

to denote the reparameterized version of the parameters (such that
Ψg ∈ RM ) if any, required in SGNHT.
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multiple thermostat variables (ξ1, · · · , ξM ) into the system
such that each ξi controls one degree of the particle mo-
mentum. Intuitively, this allows energy to be exchanged
between particles and thermostats more efficiently, thus
driving the system to equilibrium states more rapidly. Em-
pirically we have also verified the superiority of the pro-
posed modification over the original SGNHT. Formally, let
Ξ = diag(ξ1, ξ2, · · · , ξM ), q = diag(v21 , · · · , v2M ), we de-
fine our proposed SGNHT using the following SDEs

dΨg = vdt , dv = f̃(Ψg)dt−Ξvdt+
√
DdW ,

dΞ = (q− I) dt , (10)

where I is the identity matrix. Interestingly, we are still
able to prove that the equilibrium distribution of the above
system corresponds to the model posterior.

Theorem 1 The equilibrium distribution of the SDE sys-
tem in (10) is p(Ψg,v,Ξ)

∝ exp

(
−1

2
v>v − U(Ψg)−

1

2
tr
{
(Ξ−D)

>
(Ξ−D)

})
.

The proof of the theorem is provided in the Supplementary
Material. By Theorem 1, it is straightforward to see that
the marginal distribution p(Ψg) of p(Ψg,v,Ξ) is exactly
the posterior of our Bayesian model. As a result, again we
can generate approximate samples from p(Ψg,v,Ξ) using
the Euler-Maruyama scheme and discard the auxiliary vari-
ables v and Ξ.

Learning for the SBN-based model Our SBN-based
model is illustrated in Figure 1. In the learning phase we
are interested in learning the global parameters Ψg , the
same as in BCDF. The constraints inside the parameters
{φk}, i.e.,

∑
p φpk = 1, prevent the SGNHT from being

applied directly. Although we can overcome this prob-
lem by using re-parameterization methods as in Patterson
& Teh (2013), we find it converges better when consider-
ing information geometry for these parameters. As a result,
we use stochastic gradient Riemannian Langevin dynam-
ics (SGRLD) (Patterson & Teh, 2013) to sample the topic-
word distributions {φk}, and use the SGNHT to sample
the remaining parameters. Based on the data augmenta-
tion for xpn above, Section 3.1 shows that the posteriors of
{φk}’s are Dirichlet distributions. This enables us to apply
the same scheme as the SGRLD for LDA (Patterson & Teh,
2013) to sample {φk}’s. More details are provided in the
Supplementary Material.

The rest of the parameters can be straightforwardly sam-
pled using the SGNHT algorithm. Specifically we need to
calculate the stochastic gradients of W(`) and c(`) evalu-
ated on a mini-batch of data (denote D as the index set of
a mini-batch). Based on the model definition in (6), these

can be calculated as

∂Ũ

∂w
(`)
k`

=
N

|D|
∑

n∈D
E
h

(`)
n ,h

(`+1)
n

[(
σ̃
(`)
k`n
− h(`)k`n

)
h(`+1)
n

]
,

∂Ũ

∂c
(`)
k`

=
N

|D|
∑

n∈D
E
h

(`)
n ,h

(`+1)
n

[
σ̃
(`)
k`n
− h(`)k`n

]
,

where σ̃(`)
k`n

= σ((w
(`)
k`

)>h(`+1)
n + c

(`)
k`

), and the expecta-
tion is taken over posteriors. As in the case of LDA (Pat-
terson & Teh, 2013), no closed-form integrations can be
obtained for the above gradients, we thus use Monte Carlo
integration to approximate the quantity. Specifically, given
{w(`)

k`
, c

(`)
k`
}, we are able to collect samples of the local

variables (h(`)
n )n∈D by running a few Gibbs steps and then

using these samples to approximate the intractable integra-
tions. Exact conditional distributions for h(`)k`n exist with-
out variable augmentation, however, we found that this ap-
proach does not mix well due to the highly correlated struc-
ture of hidden variables. Instead, we sample h(`)k`n based on
the same augmentation used in BCDF, given in (8).

Learning for the RBM-based model As mentioned
above, our RBM-based model is recovered when replac-
ing the SBN with the RBM in Figure 1. Despite mi-
nor changes in the construction, the intractable normalizer
which consists of model parameters (e.g., W(`)) prohibits
exact MCMC sampling from being applied. As a result, we
develop an approximate learning algorithm that alternates
between sampling ({φk}, {γk}, γ0}) and ({W(`), c(`)}).
Specifically, we use the same conditional posteriors as in
the SBN-based model to sample the former, but use the
contrastive divergence algorithm (CD-1) (Hinton, 2002)
for the latter. One main difference of our CD-1 algorithm
w.r.t the original one is that the inputs (i.e., h(1)

n ) are hid-
den variables. To make the CD-1 work, conditioned on
other model parameters, we first sample h(1)

n using the pos-
terior given in Section 3.1, then conditioned on h(1)

n , we
apply the original CD-1 algorithm to calculate the approxi-
mate gradients for ({W(`), c(`)}), which are then used for
a gradient descent step in SGNHT. In fact, the CD-1 is
also a stochastic approximate algorithm, discussed in Yuille
(2005), making it naturally fit into our SGNHT framework.

3.3. Discussion

Both the BCDF and SGNHT are stochastic inference al-
gorithms, allowing the models to be applied to large-scale
data. In terms of ease of implementation, BCDF beats
SGNHT in most cases, especially when the model is conju-
gate and the domain of parameters is constrained (e.g., vari-
ables on a simplex). However, in general BCDF is more re-
strictive than SGNHT. For example, BCDF prefers the con-
ditional densities for all the parameters, which is unavail-
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able in some cases. Furthermore, BCDF has the limitation
of being unable to deal with some big models where the
number of model parameters is large, for instance, when
the dimension of the hidden variables from the SBN in our
model is huge. Finally, the conditions for BCDF to con-
verge to the true posterior are more restricted. Altogether,
these reasons make SGNHT more robust than BCDF.

4. Related Work
In traditional Bayesian topic models, topic correlations are
typically modeled with shallow structures, e.g., the corre-
lated topic model (Blei & Lafferty, 2007) with correlation
between topic proportions imposed via the logistic normal
distribution. There exist also some work on hierarchical
(“deep”) correlation modeling, e.g., the hierarchical Dirich-
let process (Teh et al., 2006), which models topic propor-
tions hierarchically via a stack of DPs. The nested Chi-
nese restaurant process (Blei et al., 2004) (nCRP) models
topic hierarchies by defining a tree structure prior based on
the Chinese restaurant process, and the nested hierarchical
Dirichlet process (Paisley et al., 2015) extends the nCRP by
allowing each document to be able to access all the paths
in the tree. One major difference between these models
and ours is that they focus on discovering topic hierarchies
instead of modeling general topic correlations.

In the deep learning community, topic models are mostly
built using the RBM as a building block. For example,
Hinton & Salakhutdinov (2011) and Maaloe et al. (2015)
extended the DBN for topic modeling, while a deep version
of the RSM was proposed by Srivastava et al. (2013). More
recent work focuses on employing deep directed generative
models for topic modeling, e.g., deep exponential families
(Ranganath et al., 2015), a class of latent variable models
extending the DBN by defining the distribution of hidden
variables in each layer using the exponential family, instead
of the restricted Bernoulli distribution.

In terms of learning and inference algorithms, most of ex-
isting Bayesian topic models rely on MCMC methods or
variational Bayes algorithms, which are impractical when
dealing with large scale data. Therefore, stochastic varia-
tional inference algorithms have been developed (Hoffman
et al., 2010; Mimno et al., 2012; Wang & Blei, 2012; Hoff-
man et al., 2013). Although scalable and usually fast con-
verging, one unfavorable shortcoming of stochastic varia-
tional inference algorithms is the mean-field assumption on
the approximate posterior.

Another direction for scalable Bayesian learning relies on
the theory from stochastic differential equations (SDE).
Specifically, Welling & Teh (2011) proposed the first
stochastic MCMC algorithm, called stochastic gradient
Langevin dynamics (SGLD), for large scale Bayesian learn-

ing. In order to make the learning faster, Patterson &
Teh (2013) generalized SGLD by considering information
geometry (Girolami & Calderhead, 2011; Byrne & Giro-
lami, 2013) of model posteriors. Furthermore, Chen et al.
(2014) generalized the SGLD by a second-order Langevin
dynamic, called stochastic gradient Hamiltonian Monte
Carlo (SGHMC). This is the stochastic version of the well
known Hamiltonian MCMC sampler. One problem with
SGHMC is that the unknown stochastic noise needs to be
estimated to make the sampler correct, which is impracti-
cal. Stochastic gradient thermostats algorithms (SGNHT)
overcome this problem by introducing the thermostat into
the algorithm, such that the unknown stochastic noise could
be adaptively absorbed into the thermostat, making the
sampler asymptotically exact. Given the advantages of the
SGNHT, in this paper we extend it to a multiple thermostats
setting, where each thermostat exchanges energy with a de-
gree of freedom of the system. Empirically we show that
our extension improves on the original algorithm.

5. Experiments
We present experimental results on three publicly available
corpora: a relatively small, 20 Newsgroups, a moderately
large, Reuters Corpus Volume I (RCV1-v2), and a large
one, Wikipedia. The first two corpora are the same as those
used in Srivastava et al. (2013). Specifically, the 20 News-
groups corpus contains 18,845 documents with a total of
0.7M words and a vocabulary size of 2K. The data was
partitioned chronologically into 11,314 training and 7,531
test documents. The RCV1-v2 corpus contains 804,414
newswire articles. There are 103 topics that form a tree
hierarchy. After preprocessing, we are left with about 75M
words, with a vocabulary size of 10K. We randomly se-
lect 794,414 documents for training and 10,000 for test-
ing. Finally, we downloaded 10M random documents from
Wikipedia using scripts provided in Hoffman et al. (2010)
and randomly selected 1K documents for testing. As in
Hoffman et al. (2010); Patterson & Teh (2013), a vocab-
ulary size of 7,702 was taken from the top 10K words in
Project Gutenberg texts.

The DPFA model consisting of SBN is denoted as DPFA-
SBN, while its RBM counterpart is denoted DPFA-RBM.
The performance of DPFA is compared to that of the fol-
lowing models: LDA (Blei et al., 2003), NB-FTM (Zhou
& Carin, 2015), nHDP (Paisley et al., 2015) and RSM
(Salakhutdinov & Hinton, 2009a).

For all the models considered, we calculate the predictive
perplexities on the test set as follows: holding the global
model parameters fixed, for each test document we ran-
domly partition the words into a 80/20% split. We learn
document-specific “local” parameters using the 80% por-
tion, and then calculate the predictive perplexities on the
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Figure 2. Predictive perplexities on a held-out test set as a function of training documents seen. The number of hidden units in each layer
is 128, 64, 32, respectively. (Left) 20 Newsgroups. (Middle) RCV1-v2. (Right) Wikipedia.

remaining 20% subset. Evaluation details are provided in
the Supplementary Material.

For 20 Newsgroups and RCV1-v2 corpora, we use 2,000
mini-batches for burn-in followed by 1,500 collection sam-
ples to calculate test perplexities; while for the Wikipedia
dataset, 3,500 mini-batches are used for burn-in. The mini-
batch size for all stochastic algorithms is set to 100. To
choose good parameters for SGNHT, e.g., the step size
and the variance of the injected noise, we randomly choose
about 10% documents from the training data as validation
set. For BCDF, 100 MCMC iterations are evaluated for
each mini-batch, with the first 60 samples discarded. We
set the hyperparameters of DPFA as aφ = 1.01, c0 = e0 =
1, f0 = 0.01, and pn = 0.5. The RSM is trained using
convergence-divergence with step size 5 and a maximum
of 10,000 iterations. For nHDP, we use the publicly avail-
able code from Paisley et al. (2015), in which stochastic
variational Bayes (sVB) inference is implemented.

20 Newsgroups The results for the 20 Newsgroups cor-
pus are shown in Table 1. Perplexities are reported for our
implementation of Gibbs sampling, BCDF and SGNHT,
and the four considered competing methods. First, we ex-
amine the performance of different inference algorithms.
As can be seen, for the same size model, e.g., 128-64-32
(128 topics and 32 binary nodes on the top of the three-
layer model), SGNHT can achieve essentially the same per-
formance as Gibbs sampling, while BCDF is more likely to
get trapped in a local mode. Next, we explore the advan-
tage of employing deep models. Using three layers instead
of two gives performance improvements in almost all the
algorithms. In Gibbs sampling, there is an improvement of
36 units for the DPFA-SBN model, when a second layer is
learned (NB-FTM is the one-hidden-layer DPFA). Adding
the third hidden layer further improves the test perplexity.

Adding a sparsity-encouraging prior on W(`) acts as
a more stringent regularization that prevents overfitting,
when compared with the commonly used L2 norm (Gaus-
sian prior). Furthermore, shrinkage priors have the effect of
being able to effectively switch off the elements of W(`),
which benefits interpretability and helps to infer the num-

ber of units needed to represent the data. In our experiment,
we observe that the DPFA-SBN model with the Student’s t
prior on W(`) achieves a better test perplexity when com-
pared with its counterpart without shrinkage.

RCV1-v2 & Wiki We present results for the RCV1-v2
and Wikipedia corpora in Table 3. Direct Gibbs sampling in
such a (big-data) setting is prohibitive, and is thus not dis-
cussed. First, we explore the effect of utilizing a larger deep
network. For our DPFA-SBN model using the SGNHT al-
gorithm, we observe that making the network 8 time larger
in each hidden layer decreases the test perplexities by 155
and 84 units on RCV1-v2 and Wikipedia, respectively. This
demonstrates the ability of our stochastic inference algo-
rithm to scale up both in terms of model and corpus size.

Both SBN and RBM can be utilized as the building block
in our deep specification. For the RCV1-v2 corpus, our best
result is obtained by utilizing a three-layer deep Boltzmann
machine. However, for the 20 Newsgroups and Wikipedia
corpora, with the same size model, we found empirically
that the deep SBN achieves better performance.

Compared with nHDP, our DPFA models define a more
flexible prior on topic interactions, and therefore in prac-
tice we also consistently achieve better perplexity results.

Table 1. Test perplexities for 20 Newsgroups. “Dim” represents
the number of hidden units in each layer, starting from the bottom.
DPFA-SBN-t represents the DPFA-SBN model with Student’s t
prior on W(`). (�) represents the base tree size in nHDP.

MODEL METHOD DIM PERP.
DPFA-SBN-t GIBBS 128-64-32 827
DPFA-SBN GIBBS 128-64-32 846
DPFA-SBN SGNHT 128-64-32 846
DPFA-RBM SGNHT 128-64-32 896
DPFA-SBN BCDF 128-64-32 905
DPFA-SBN GIBBS 128-64 851
DPFA-SBN SGNHT 128-64 850
DPFA-RBM SGNHT 128-64 893
DPFA-SBN BCDF 128-64 896
LDA GIBBS 128 893
NB-FTM GIBBS 128 887
RSM CD5 128 877
NHDP SVB (10,10,5)� 889
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Table 2. Top words from the 30 topics corresponding to the graph in Figure 3, learned by DPFA-SBN from the 20Newsgroup corpus.

T1 T3 T8 T9 T10 T14 T15 T19 T21 T24
year people group world evidence game israel software files team
hit real groups country claim games israeli modem file players
runs simply reading countries people win jews port ftp player
good world newsgroup germany argument cup arab mac program play
season things pro nazi agree hockey jewish serial format teams
T25 T26 T29 T40 T41 T43 T50 T54 T55 T64
god fire people wrong image boston problem card windows turkish
existence fbi life doesn program toronto work video dos armenian
exist koresh death jim application montreal problems memory file armenians
human children kill agree widget chicago system mhz win turks
atheism batf killing quote color pittsburgh fine bit ms armenia
T65 T69 T78 T81 T91 T94 T112 T118 T120 T126
truth window drive makes question code children people men sex
true server disk power answer mit father make women sexual
point display scsi make means comp child person man cramer
fact manager hard doesn true unix mother things hand gay
body client drives part people source son feel world homosexual

We further show test perplexities as a function of docu-
ments processed during model learning in Figure 2. As can
be seen, performance smoothly improves as the amount of
data processed increases.

Table 3. Test perplexities on RCV1-v2 and Wikipedia. “Dim” rep-
resents the number of hidden units in each layer, starting from the
bottom. (�) represents the base tree size in nHDP.

MODEL METHOD DIM RCV WIKI

DPFA-SBN SGNHT 1024-512-256 964 770
DPFA-SBN SGNHT 512-256-128 1073 799
DPFA-SBN SGNHT 128-64-32 1143 876
DPFA-RBM SGNHT 128-64-32 920 942
DPFA-SBN BCDF 128-64-32 1149 986
LDA BCDF 128 1179 1059
NB-FTM BCDF 128 1155 991
RSM CD5 128 1171 1001
NHDP SVB (10,5,5)� 1041 932

Sensitivity analysis We examined the sensitivity of the
model performance with respect to batch sizes in SGNHT
on the three corpora considered. We found that overall
performance, both convergence speed and test perplexity,
suffer considerably when the batch size is smaller than 10
documents. However, for batch sizes larger than 50 (100
for RCV1-v2) we obtain performances comparable to those
shown in Tables 1 and 3. Additional details including test
perplexity traces as a function of documents seen by the
model are presented in the Supplementary Material.

Visualization We can obtain a visual representation of
the topic structure implied by the deep component of our
DPFA model by computing correlations between topics us-
ing the weight matrices, W(`), learned by DPFA-SBN, i.e,
we evaluate the covariance W(1)W(2)(W(1)W(2))>, then
scale it accordingly. Figure 3 shows a graph for a subset
of 30 topics (nodes), where edge thickness encodes corre-
lation coefficients and we have chosen, to ease visualiza-
tion, to show only coefficients larger than 0.85. In addi-

tion, Table 2 shows the top words for each topic depicted
in Figure 3. We see three very interesting subgraphs repre-
senting different categories, namely, sports, computers and
politics/law. Complete tables of the most probable words
in the learned topics, and graphs for the three corpora con-
sidered are presented in the Supplementary Material.
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Figure 3. Graphs induced by the correlation structure learned by
DPFA-SBN for the 20 Newsgroups. Each node represents a topic
with top words shown in Table 2.

6. Conclusion
We have presented the Deep Poisson Factor Analysis
model, an extension of PFA, that models the high-order in-
teractions between topics, via a deep binary hierarchical
structure, employing SBNs and RBMs. To address large-
scale datasets, two stochastic Bayesian learning algorithms
were developed. Experimental results on several corpora
show that the proposed approach obtains superior test per-
plexities and reveals interesting topic structures.

While this work has focused on unsupervised topic model-
ing, one can extend the model into a supervised version by
joint modeling of the text with associated labels via latent
binary features as in Zhang & Carin (2012). Furthermore,
as mentioned in Section 5, global-local shrinkage priors
(Polson & Scott, 2012) will encourage a large proportion
of the elements of W(`) to be shrunk close to zero. By set-
ting the number of hidden units to a reasonably large value,
this provides a natural way to let the model select automat-
ically the number of features actually needed.
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processes and regularized regression. J. R. Statist. Soc.
B, 2012.

Polson, N. G., Scott, J. G., and Windle, J. Bayesian in-
ference for logistic models using Pólya-Gamma latent
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