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Introduction

Problem of interest: How to develop deep generative models for
documents that are represented in bag-of-words form?
@ Directed Graphical Models:
o Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
e Focused Topic Model (FTM) (Williamson et al., 2010)
e Poisson Factor Analysis (PFA) (Zhou et al., 2012)
@ Going “Deep”?
e Hierarchical tree-structured topic models
o nested Chinese Restaurant Process (nCRP) (Blei et al., 2004)
e Hierarchical Dirichlet Process (HDP) (Teh et al., 2006)
e nested Hierarchical Dirichlet Process (nHDP) (Paisley et al., 2015)

@ How about we want to model general topic correlations?
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Introduction

@ Undirected Graphical Models:
o Replicated Softmax Model (RSM) (Salakhutdinov and Hinton,
2009b)
@ One generalization of the Restricted Boltzmann Machine (RBM)
(Hinton, 2002)
@ Going Deep?
o Deep Belief Networks (DBN) (Hinton et al., 2006; Hinton and
Salakhutdinov, 2011)
o Deep Boltzmann Machines (DBM) (Salakhutdinov and Hinton,
2009a; Srivastava et al., 2013)

@ Topics are not defined “properly”.
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Introduction

Main idea:

@ Poisson Factor Analysis (PFA) + Deep Sigmoid Belief Network
(SBN) or Restricted Boltzmann Machine (RBM).

@ PFA is employed to interact with data at the bottom layer.

@ Deep SBN or RBM serve as a flexible prior for revealing topic
structure.

n=1,...,.N

Figure: Graphical model for the Deep Poisson Factor Analysis with three layers of hidden binary hierarchies. The directed
binary hierarchy may be replaced by a deep Boltzmann machine.
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Model Formulation

Poisson Factor Analysis: (Zhou et al., 2012)

@ We represent a discrete matrix X € Z%*N containing counts from
N documents and P words as

X = Pois(®(0 o HM)). (1)

@ Each column of ®, ¢, encodes the relative importance of each
word in topic k.

@ Each column of @, 8, contains relative topic intensities specific to
document n.

@ Each column of H!), A" defines a sparse set of topics
associated with each document.
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Model Formulation

Poisson Factor Analysis: (Zhou et al., 2012)

@ We construct PFAs by placing Dirichlet priors on ¢, and gamma
priors on 6.

Xpn = 25:1 Xpnk »  Xpnk ~ POiS(Qspkeknh;((L)) ) (2)

with priors specified as ¢, ~ Dir(ay, ..., ay),
Okn ~ Gamma(rk, Pn/(1 — pn)), rx ~ Gamma(yo, 1/¢), and
Yo ~ Gamma(ep, 1/1).

@ Previously, a beta-Bernoulli process prior is defined on h(”
assuming topic independence (Zhou and Carin, 2015).

@ The novelty in our models comes from the prior for hf,”.
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Model Formulation

Structured Priors on the Latent Binary matrix:

@ Assume hf,” € {0,1}%, we define another hidden set of units
hﬁ,z) € {0, 1} placed at a layer “above” hf,”.
@ Modeling with the RBM: (Undirected)

— E(h, APy = ()T 4+ (A TWO AP 1 (AP Tc?) . (3)

@ Modeling with the SBN (Neal, 1992): (Directed)

p(hZ) =1) = o(c?), (4)
p(big = 117) = o (W) T + ¢(7) ©)
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Model Formulation

Going Deep?
@ Add multiple layers of SBNs or RBMs.

J J

Figure: Graphical model for the Deep Poisson Factor Analysis with three layers of hidden binary hierarchies. The directed
binary hierarchy may be replaced by a deep Boltzmann machine.
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Scalable Posterior Inference

Challenge: Designing scalable Bayesian inference algorithms.
Solutions: Scaling up inference by stochastic algorithms.

@ Applying Bayesian conditional density filtering algorithm
(Guhaniyogi et al., 2014).

@ Extending recently proposed work on stochastic gradient
thermostats (Ding et al., 2014).
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Scalable Posterior Inference

Bayesian conditional density filtering (BCDF):

@ Repeatedly updating the surrogate conditional sufficient statistics
(SCSS) using the current mini-batch.

@ Drawing samples from the conditional posterior distributions of
model parameters, based on SCSS.

@ “stochastic Gibbs-style” updates.

Input: text documents, i.e., a count matrix X.

Initialize W randomly and set S, all to zero. @ W,: global parameters
fort =1to oo do . .
Get one minibatch X @ W;: local hidden variables
il ) _ ylt=1 () _ gt=1)
Initialize W' = Wy~ 7/, and S, Sy Py Sg: SCSS for wg

Initialize lIJV) randomly.
fors=1to Sdo
Gibbs sampling for DPFA on X(®.
Collect samples W/°, W% and S/ °.
end for
Set ‘U(gr) = mezm(\lﬂg:s), and Sg) mean(S}, S).
end for
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Scalable Posterior Inference

Stochastic Gradient Nose-Hoover Thermostats (SGNHT):
@ Extending Hamiltonian Monte Carlo using stochastic gradient.
@ Introducing thermostat to maintain system temperature.
@ Adaptively absorbing stochastic gradient noise.

@ The motion of the particles in the system are defined by the
stochastic differential equations (SDE)

dWy = vdt, dv = f(Wg)dt — Evdt + vVDAW
dg:(% viv 1)dt, (6)
where Wy € RM are model parameters v € RM are the

momentum variables, f(Wg) £ —Vy,U(Wg), and U(W,) is the
negative log-posterior.
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Scalable Posterior Inference

Extension:

@ Extending the SGNHT by introducing multiple thermostat
variables (&1, - - - , ) into the system such that each &; controls
one degree of the particle momentum.

@ The proposed SGNHT is defined by the following SDEs

dW, = vdt, dv =Ff(Wy)dt — Zvdt + vVDdW,
d==(q-1)dt, (7)

where = = diag(¢1, &, - ,ém), q = diag(v7, -+, Vi)

The equilibrium distribution of the SDE system in (7) is
= 1.7 1 = T (=
p(Wg, v, =) o exp (_§V v—U(Wy) - 5”{(_ -D) (=- D)}) .
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Scalable Posterior Inference

Stochastic Gradient Nose-Hoover Thermostats (SGNHT):

Input: text documents, i.e., a count matrix X.
Random Initialization.
for t ﬂ})to (g
t
vy Wy’ +vOh,

vt = f(w(’+1 yh — =0 vOh 4+ \/2DAN(0,1).

=t = =0 4 (gt — 1)h, where q =
diag(vf,...,vfd).
end for
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Scalable Posterior Inference

Stochastic Gradient Nose-Hoover Thermostats (SGNHT):

Input: text documents, i.e., a count matrix X.

Random Initialization.

fort =1 to co do
Wi — w(’) +viOh,
vt = f(w(’+1 yh — =0 vOh 4+ \/2DAN(0,1).
=) = =0 4 (gD — 1)h, where q =
diag(vf,...,vfd).

end for

Discussion:
@ BCDF: ease of implementation, but prefers the conditional
densities for all the parameters.

@ SGNHT: more general and robust, fast convergence.
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Datasets:
@ 20 Newsgroups: 20K documents with a vocabulary size of 2K.
@ RCV1-v2: 800K documents with a vocabulary size of 10K.
@ Wikipedia: 10M documents with a vocabulary size of 8K.
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Experiments

Quantitative Evaluation:

Table: 20 Newsgroups.

Table: RCV1-v2 & Wikipedia.

MODEL METHOD Dim PERP. MODEL METHOD Dim RCV WIKI

DPFA-SBN-t GIBBS 128-64-32 827 DPFA-SBN SGNHT 1024-512-256 964 770

DPFA-SBN GiBBS 128-64-32 846 DPFA‘EBN ggNﬁ ?;2'2263;28 1?2 ;32

DPFA-SBN N -64-

Bﬁiﬁ-ggk‘n gg“:$ ]gg'gi‘gg ggg DPFA-RBM  SGNHT  128-64-32 920 942
: bl DPFA-SBN  BCDF 128-64-32 1149 986

DPFA-SBN BCDF 128-64-32 905 DA BCDF 128 1179 1059

DPFA-SBN GIBBS 128-64 851 NB-FTM BCDF 128 1155 991

DPFA-SBN SGNHT 128-64 850 RSM CcD5 128 1171 1001

DPFA-RBM SGNHT 128-64 893 NHDP sVB (10,5,5)° 1041 932

DPFA-SBN BCDF 128-64 896

LDA GIBBS 128 893

NB-FTM GiBBS 128 887

RSM CD5 128 877

NHDP sVB (10,10,5)° 889
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Experiments

Quantitative Evaluation:

1
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Figure: Perplexities. (Left) 20 News. (Middle) RCV1-v2. (Right) Wikipedia.
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Experiments

Topics we learned on 20 Newsgroups:

T T3 T8 T9 T10 T14 T15 T19 T21 T24

year people group world evidence game israel software files team

hit real groups country claim games israeli modem file players

runs simply reading countries  people win jews port ftp player

good world newsgroup germany argument  cup arab mac program play

season things pro nazi agree hockey jewish serial format teams

T25 T26 T29 T40 T41 T43 T50 T54 T55 T64

god fire people wrong image boston problem card windows turkish

existence  fbi life doesn program toronto work video dos armenian

exist koresh death jim application montreal problems  memory file armenians

human children kill agree widget chicago system mhz win turks

atheism batf killing quote color pittsburgh  fine bit ms armenia

T65 T69 T78 T81 T91 T94 T112 T118 T120 T126

truth window drive makes question code children people men sex

true server disk power answer mit father make women sexual

point display scsi make means comp child person man cramer

fact manager hard doesn true unix mother things hand gay

body client drives part people source son feel world homosexual
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Visualization:
Sports, Computers, and Poltics/Law.

&)
Figure: Graphs induced by the correlation structure learned by DPFA-SBN for
the 20 Newsgroups.
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@ Model: Deep Poisson Factor Analysis

e PFA is employed to interact with data at the bottom layer.
o Deep SBN or RBM serve as a flexible prior for revealing topic
structure.

@ Scalable Inference:

e Bayesian conditional density filtering.
@ Stochastic gradient thermostats.

O https://github.com/zhegan27/dpfa_icml2015
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https://github.com/zhegan27/dpfa_icml2015

Questions?
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