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A Information Measures

Since our paper constrain correlation of two random variables using information theoretical measures,
we first review the related concepts. For any probability measure π on the random variables x and
z, we have the following additive and subtractive relationships for various information measures,
including Mutual Information (MI), Variation of Information (VI) and the Conditional Entropy (CE).

VI(x, z) =− Eπ(z,x)[log π(x|z)]− Eπ(x,z)[log π(z|x)] (1)

=− Eπ(z,x)[log
π(x, z)

π(x)π(z)
+ log π(x, z)] (2)

=− Iπ(x, z) +Hπ(x, z) (3)

=− Eπ(z,x)[log
π(x, z)

π(x)π(z)
+ log π(x, z)] (4)

=− 2Iπ(x, z) +Hπ(x) +Hπ(z) (5)

A.1 Relationship between Mutual Information, Conditional Entropy and the Negative Log
Likelihood of Reconstruction

The following shows how the negative log probability (NLL) of the reconstruction is related to
variation of information and mutual information. On the support of (x, z), we denote q as the encoder
probability measure, and p as the decoder probability measure. Note that the reconstruction loss for
z can be writen as its log likelihood form as LR = −Ez∼p(z),x∼p(x|z)[log q(z|x)].

Lemma 1 For random variables x and z with two different probability measures, p(x, z) and
q(x, z), we have
Hp(z|x) = −Ez∼p(z),x∼p(x|z)[log p(z|x)] (6)

= −Ez∼p(z),x∼p(x|z)[log q(z|x)]− Ez∼p(z),x∼p(x|z)
[
log p(z|x)− log q(z|x)

]
(7)

= −Ez∼p(z),x∼p(x|z)[log q(z|x)]− Ep(x)(KL(p(z|x)‖q(z|x))) (8)

≤ −Ez∼p(z),x∼p(x|z)[log q(z|x)] (9)

where Hp(z|x) is the conditional entropy. From lemma 1, we have

Corollary 1 For random variables x and z with probability measure p(x, z), the mutual information
between x and z can be written as

Ip(x, z) = Hp(z)−Hp(z|x) ≥ Hp(z) + Ez∼p(z),x∼p(x|z)[log q(z|x)]. (10)
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Given a simple prior p(z) such as isotropic Gaussian, H(z) is a constant.

Corollary 2 For random variables x and z with probability measure p(x, z), the variation of
information between x and z can be written as

VIp(x, z) = Hp(x|z) +Hp(z|x) ≥ Hp(x|z)− Ez∼p(z),x∼p(x|z)[log q(z|x)]. (11)

B Proof for Adversarial Learning Schemes

The proof for cycle-consistency and conditional GAN using adversarial traning is shown below. It
follows the proof of the original GAN paper: we first show the implication of optimal discriminator,
and then show the corresponding optimal generator.

B.1 Proof of Proposition 1: Adversarially Learned Cycle-Consistency for Unpair Data

In the unsupervised case, given data sample x, one desirable property is reconstruction. The following
game learns to reconstruct:

min
θ,φ

max
ω
L(θ,φ,ω) = Ex∼q(x)[log σ(fω(x,x)) + Ez∼qφ(z|x),x̂∼pθ(x̂|z) log(1− σ(fω(x, x̂)))]

(12)

Proposition 1 For fixed (θ,φ), the optimal ω in (12) yields fω∗(x, x̂) = Eqφ(z|x)pθ(x̂|z) =
δ(x̂− x).

Proof We start from a simple observation

Ex∼q(x) log σ(fω(x,x)) = Ex∼q(x),x̂∼q̃(x̂|x) log σ(fω(x, x̂)) (13)

when q̃(x̂|x) , δ(x̂− x). Therefore, the objective in (12) can be expressed as

Ex∼q(x),x̂∼q̃(x̂|x) log σ(fω(x, x̂)) + Ex∼q(x),z∼qφ(z|x),x̂∼pθ(x̂|z) log(1− σ(fω(x, x̂))) (14)

=

∫
x

∫
x̂

{
q(x)q̃(x̂|x) log σ(fω(x, x̂)) +

∫
z

q(x)qφ(z|x)pθ(x̂|z) log(1− σ(fω(x, x̂)))dz
}
dxdx̂

(15)

Note that ∫
z

q(x)qφ(z|x)pθ(x̂|z) log(1− σ(fω(x, x̂)))dz (16)

=q(x) log(1− σ(fω(x, x̂)))
∫
z

qφ(z|x)pθ(x̂|z)dz (17)

=q(x)[Eqφ(z|x)pθ(x̂|z)] log[1− σ(fω(x, x̂))] (18)

The expression in (14) is maximal as a function of fω(x, x̂) if and only if the integrand is maximal
for every (x, x̂). However, the problem maxt a log(t)+ b log(1− t) attains its maximum at t = a

a+b ,
showing that

σ(fω∗(x, x̂)) =
q(x)q̃(x̂|x)

q(x)q̃(x̂|x) + q(x)Eqφ(z|x)pθ(x̂|z)
=

q̃(x̂|x)
q̃(x̂|x) + Eqφ(z|x)pθ(x̂|z)

(19)

For the game in (12), for which (θ,φ) are optimized as to most confuse the discriminator, the optimal
solution for the distribution parameters (θ∗,φ∗) yield σ(fω∗(x, x̂)) = 1/2 [1], and therefore from
(19)

Eqφ∗ (z|x)pθ∗(x̂|z) = δ(x− x̂). (20)

�

Similarly, we can show the cycle consistency property for reconstructing z as Epθ∗ (x|z)qφ∗(ẑ|x) =
δ(z − ẑ).
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B.2 Proof of Proposition 2: Adversarially Learned Conditional Generation for Paired Data

In the supervised case, given the paired data sample π(x, z), the following game is used to condition-
ally generate x [2]:

min
θ

max
ω
L(θ,ω) = Ex,z∼π(x,z)[log σ(fω(x, z)) + Ex̃∼pθ(x̃|z) log(1− σ(fω(x̃, z)))] (21)

To show the results, we need the following Lemma:

Lemma 2 The optimial generator and discriminator, with parameters (θ∗,ω∗), forms the saddle
points of game in (21), if and only if pθ∗(x|z) = π(x|z). Further, pθ∗(x, z) = π(x, z)

Proof For the observed paired data π(x, z), we have p(z) = π(z), where π(z) is marginal empirical
distribution of z for the paired data.

Also, π(x̃|z) = δ(x̃− x) when x̃ is paired with z in the dataset. We start from the observation

Ex,z∼π(x,z) log σ(fω(x, z)) = Ez∼p(z),x̃∼π(x̃|z) log σ(fω(x̃, z)) (22)

Therefore, the objective in (21) can be expressed as

Ex∼p(z),x̃∼π(x̃|z) log σ(fω(x̃, z)) + Ez∼p(z),x̃∼pθ(x̃|z) log(1− σ(fω(x̃, z))) (23)

This integral is maximal as a function of fω(x, z) if and only if the integrand is maximal for every
(x, z). However, the problem maxt a log(t) + b log(1− t) attains its maximum at t = a

a+b , showing
that

σ(fω∗(x, z)) =
p(x)π(x|z)

p(x)π(x|z) + p(z)pθ(x|z)
=

π(x|z)
π(x|z) + pθ(x|z)

(24)

or equivalently, the optimum generator is pθ∗(x|z) = π(x|z). Since q(x) = π(x), we further have
pθ∗(x, z) = π(x, z). Similarly, for conditional GAN of z, we can show that is qφ∗(z|x) = π(z|x)
and qφ∗(x, z) = π(x, z) for the Combining them, we show that pθ∗(x, z) = π(x, z) = qφ∗(x, z).

�
C More Results on the Toy Data
C.1 The detailed setup

The 5-component Gaussian mixture model (GMM) in x is set with the means
(0, 0), (2, 2), (−2, 2), (2,−2), (−2,−2), and standard derivation 0.2. The Isotropic Gaussian
in z is set with mean (0, 0) and standard derivation 1.0.

We consider various network architectures to compare the stability of the methods. The hyperpa-
rameters includes: the number of layers and the number of neurons of the discriminator and two
generators, and the update frenquency for discriminator and generator. The grid search specification
is summarized in Table 1. Hence, the total number of experiments is 23 × 23 × 32 = 576.

A generalized version of the inception score is calculated, ICP = ExKL(p(y)||p(y|x)), where x
denotes a generated sample and y is the label predicted by a classifier that is trained off-line using the
entire training set. It is also worth noting that although we inherit the name “inception score” from [3],
our evaluation is not related to the “inception” model trained on ImageNet dataset. Our classifier
is a regular 3-layer neural nets trained on the dataset of interest, which yields 100% classification
accuracy on this toy dataset.

C.2 Reconstruction of z and sampling for x
We show the additional results for the econstruction of z and sampling for x in Figure 1. ALICE
shows good sampling ability, as it reflects the Guassian characteristics for each of 5 components,
while ALI’s samples tends to be concentrated, reflected by the shrinked Guassian components. DAE
learns an indentity mapping, and thus show weak generation ability.

C.3 Summary of the four variants of ALICE
ALICE is a general CE-based framework to regularize the objectives of bidiretional adversarial
training, in order to obtain desirable solutions. To clearly show the versatility of ALICE, we
summarize its four variants, and test their effectivenss on toy datasets.

In unsupervised learning, two forms of cycle-consistency/reconstruction are considered to bound CE:
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(a) ALICE (b) ALI (c) DAEs
Figure 1: Qualitative results on toy data. Every two columns indicate the results of a method, with
left space as reconstruction of z and right space as sampling in x, respectively.

• Explicit cycle-consistency: Explicitly specified `k-norm for reconstruction;
• Implicit cycle-consistency: Implicitly learned reconstruction via adversarial training

In semi-supervised learning, the pairwise information is leveraged in two forms to approximate CE:

• Explicit mapping: Explicitly specified `k-norm mapping (e.g., standard supervised losses);
• Implicit mapping: Implicitly learned mapping via adversarial training

Disucssion (i) Explicit methods such as `k losses (k = 1, 2): The similarity/quality of the re-
construction to the original sample is measured in terms of `k metric. This is easy to implement
and optimize. However, it may lead to visually low quality reconstruction in high dimensions. (ii)
Implicit methods via adversarial training: it essentially requires the reconstruction to be close to
the original sample in terms of `0metric (see Section 3.3 of [4]: Adversarial feature learning). It
theoretically guarantees perfect reconstruction, however, this is hard to achieve in practice, espcially
in high dimension spaces.

Results The effectivenss of these algorithms are demonstrated on toy data of low dimension in Fig-
ure 2. The unsupervised variants are tested in the same toy dataset described above, the results are in
Figure 2 (a)(b). For the supervised variants, we create a toy dataset, where z-domain is 2-component
GMM, and x-domain is 5-component GMM. Since each domain is symmtric, ambiguity exists when
Cycle-GAN variants attempt to discover the relationship of the two domains in pure unsupervised
setting. Indeed, we observed random switching of the discoverd corresponded components in different
runs of Cycle-GAN. By adding a tiny fraction of pairwise information (a cheap way to specify the
desirable relationship ), we can easily learn the correct correspondences for the entire datasets. In Fig-
ure 2 (c)(d), 5 pairs (out of 2048) are pre-specified: the points [0, 0], [1, 1], [−1,−1], [1,−1], [−1, 1]
in x-domain are paired with the points in z-domain with opposite signs. Both explicit and implicit
ALICE find the correct pairing configurations for other unlabeled samples. This inspires us to
manually labeling the relations for a few samples between domains, and use ALICE to automatically
control the full datasets pairing for the real datasets. One example is shown on Car2Car dataset.

C.4 Comparisons of ALI with stochastic/deterministic mappings
We investigate the ALI model with different mappings:

• ALI: two stochastic mappings;
• ALI−: one stochastic mapping and one deterministic mapping;
• BiGAN: two deterministic mappings.

We plot the histogram of ICP and MSE in Fig. 3, and report the mean and standard derivation in
Table 2. In Fig. 4, we compare their reconstruction and generation ability. Models with deterministic
mapping have higher recontruction ability, while show lower sampling ability.

Comparison on Reconstruction Please see row 1 and 2 in Fig. 4. For reconstruction, we start from
one sample (red dot), and pass it through the cycle formed by the two mappings 100 times. The
resulted reconstructions are shown as blue dots. The reconstructed samples tends to be concentrated
with more deterministic mappings.

Comparison on Sampling Please see row 3 and 4 in Fig. 4. For sampling, we first draw 1024
samples in each domain, and pass them through the mappings. The generated samples are colored as
the index of Gaussian component it comes from in the original domain.
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(a) Explicit Cycle-Consistency (L2 loss) (b) Implicit Cycle-Consistency (Adversarial loss)

(c)Explicit Mapping (L2 loss) (d) Implicit Mapping (Adversarial loss)
Figure 2: Results of four variants of ALICE on toy datasets.

Table 1: Grid search specification.

Settings Values

Number of layers [2, 3]
Number of neurons [256, 512]
Update frenquency [1, 3, 5]

Table 2: Testing MSE and ICP on toy dataset..

Method MSE ICP

ALICE 0.022± 0.029 4.595± 0.604
ALI 4.856± 2.920 2.776± 1.516
ALI− 3.888± 7.343 3.420± 1.299
BiGAN 2.399± 3.605 3.712± 1.278
DAEs 0.003± 0.004 2.913± 0.004
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(a) Inception Score (b) MSE
Figure 3: Quantitative results on toy data.
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(a) ALICE (b) ALI (c) ALI− (c) BiGAN

Figure 4: Comparison with bidirectional GAN models with different stochastic or deterministic
mappings. The 1st row is the reconstruction of z, and the 2nd row is the reconstruction of x. In these
two rows, the red dot is the original data point, the blue dots are the reconstruction. The 3rd row is
the sampling of z, and 4th row is the sampling of x. and 5th row is the reconstruction for x. In the
3rd row, colors of the generated z indicate the component of x that z conditions on.
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D More Results on the Effectiveness of CE Regularizers

We investigate the effectiveness and impact of the proposed cycle-consistency regularizer (explicit `2
norm) on 3 datasets, including the toy dataset, MNIST and CIFAR-10. A large range of weighting
hyperparameter λ is tested. The inception scores on toy and MNIST datasets are evaluted by the
pre-trained “perfect” classifiers of these datasets, respectively, while inception scores on CIFAR is
based on ImageNet. The results for different λ are shown in Figure 5, and the best performance is
sumarized in Table 3.

Table 3: Compariso on real datasets.

Image generation (ICP ↑) Image reconstruction (MSE ↓)

Settings ALI ALICE (λ = 1) ALI ALICE (λ = 10−6)

MNIST 8.749± 0.09 9.279± 0.07 0.4803± 0.100 0.0803± 0.007
CIFAR 5.93± 0.0437 6.015± 0.0284 0.672± 0.1129 0.4155± 0.2015
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(e) CIFAR: image generation (f) CIFAR: image reconstruction

Figure 5: Impact of the proposed cycle-consistency regularizer. The “perfect” performance is shown
as a solid line, the ALI (i.e., without CE regularizer) performance is a dash line. ALICE with different
levels of regularization are shown as light blue dots, and best performance of ALICE is shown as the
dot with a dark blue circle.
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E More Details on Real Data Experiments
E.1 Car to Car Experiment
Setup The dataset [5] consists of rendered images of 3D car models with varying azimuth angles
at 15◦ intervals. 11 views of each car are used. The dataset is split into train set ( 169×11=1859
images) and test set ( 14×11 =154 images), and further split the train set into two groups, each of
which is used as A domain and B domain samples. To evaluate, we trained a regressor and a classifier
that predict the azimuth angle using the train set. We map the car image from one domain to the
other, and then reconstruct to the original domain. The cycle-consistency is evaluted as the prediction
accuracy of the reconstructed images.

Table 4 shows the MSE and prediction accuracy by leverage the supervision in different number
of angles. To further demonstrate that we can easily control the correspondence configuration
by designing the proper supervision, we use ALICE to enforce coherent supervsion and opposite
supervision, respectively. Only 1% supervison information is used in each angle. We translated
images in the test set using each of the three trained models, and azimuth angles were predicted using
the regressor for both input and translated images. In Table 5, we show the cross domain relationship
discovered by each method. X and Y axis indicates predicted angles of original and transformed cars,
respectively. All three plots are results at the 10th epoch. Scatter points with supervision are more
concentrated on the diagnals in the plots, which indicates higher prediction/correlation. The learning
curves are shown in Table 5(d). The Y axis indicate the RMSE in angle prediction. We see that very
weak supervision can largely imporve the convergence results and speed. Example and comparison
arre shown in Figure6.

Table 4: ACC and MSE in prediction
on car translation. The top four meth-
ods are our methods reported in the
format of #Angle (supervison%).

Methods MSE ACC (%)

11 (1%) 438.71±5.43 80.32±5.30
11 (10%) 366.74±0.38 84.83±2.68
6 (10%) 380.61±4.94 83.27±3.37
2 (10%) 656.28±20.9 16.20±3.50

DiscoGAN 712.20±14.6 13.86±3.00
BiGAN 790.13±15.0 12.07±4.03

Table 5: The scatter plots on car2car.
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Figure 6: Cross-domain relationship discovery with weakly supervised information using ALICE.
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E.2 Edge-to-Shoe Dataset

The MSE results on cross-domain prediction and one-domain reconstruction are shown in Figure 7.
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Figure 7: SSIM and MSE on Edge-to-Shoe dataset. Top 2 rows are results reported for both domains, and the
bottom 2 rows are results for edge domain only.
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E.3 Celeba Face Dataset

Reconstruction results on the validation dataset of Celeba dataset are shown in Figure 8. ALI results
are from the paper [6]. ALICE provides more faithful reconstruction to the input subjects. As a
trade-off between theoretical optimum and practical convergence, we employ feature matching, and
thus our results exhibits slight bluriness characteristic.

(a) ALICE (b) ALI

�!�������������
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��������!���� ��� 	������

��������������������

(c) Generated faces.
Figure 8: Reconstruction of (a) ALICE and (b) ALI. Odd columns are original samples from the validation set
and even columns are corresponding reconstructions. (c) Generated faces (even rows), based on the predicted
attributes of the real face image (odd row).

E.4 Real applications: Edges to Cartoon

We demonstrate the potential real applications of ALICE algorithms on the task of sketch to cartoon.
We built a dataset by collecting frames from Disney’s film Alice in Wonderland. A large image
size 256× 256 is considered. The training dataset consists of two domains: cartoon images and
edges images, where the edges are created via holistically-nested edge detection [7] on their true
cartoon images. The image content is about either of two characters in the film: Alice or White
Rabbit. Therefore, each domain exhibits two modes. 52 images are collected in each domain. The
one-to-one image correspondence between two domain is unknown, the goal is to efficiently generate
realistic cartoon images for animation, based on the edges.

CycleGAN is an unsupervised learning algorithm. Since we have shown its equivalence to
ALI/BiGAN (see Related Work), and its superiority in terms of stability. We derive our weakly
supervised ALICE algorithm on this dataset as: (i) CycleGAN for the unpaired data, and (ii) explicit
`0 loss and/or implicit conditional GAN loss for the paired samples. Note that only one pair are
randomly chosen for each character. We summarized the results:
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• ALICE converges faster than CycleGAN: . The generated images after 6K iterations are
show in Figure 9. CycleGAN generates images with mixed colors (for example, the clothes
of Rabbit), while ALICE clearly paint colors in different regions.

• ALICE enbles desirable generated images (with better generalization): The generated
images after 10K iterations are show in Figure 10. We generated image based on slightly
different edges: more background and details on the character. CycleGAN gets confused
when identifying the character, thus inconsistently paint the wrong color to Rabbit, while
explicit ALICE still generates correct color.

(a) Real Cartoon

(b) Real Edges

(c) Generated cartoon images via explicit ALICE

(d) Generated cartoon images via implicit ALICE

(e) Generated cartoon images via CycleGAN
Figure 9: Generaed cartoon images (conditioned on training edges in (b)) after 6K iterations of different
algorithms: (c) explicit ALICE, (d) implicit ALICE and (e) CycleGAN.
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(a) Real Cartoon

(b) Real Edges

(c) Generated cartoon images via explicit ALICE

(d) Generated cartoon images via implicit ALICE

(e) Generated cartoon images via CycleGAN
Figure 10: Generaed cartoon images (conditioned on more detailed edges in (b)) after 10K iterations of different
algorithms: (c) explicit ALICE, (d) implicit ALICE and (e) CycleGAN.
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