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Motivation
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Training Deep Neural Networks

@ Significant empirical success of Deep Neural Networks
e While SGD with Backpropagation is popular, two issues
exit:
@ Overfitting

o Make overly confident decisions on prediction

@ Pathological curvature and nonconvex of parameter space
o Render optimization difficult to find a good local minima
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Incorporating uncertainty

o Bayesian Learning Reduces Overfitting; Incorporation of
uncertainty helps improve performance

@ Recent works of being Bayesian for deep learning
@ Early Stop and Dropout have Bayesian interpretation
o [Duvenaud AISTATS 2016], [Kingma, NIPS 2015]
@ Variation Inference
o [Blundell, ICML 2015], [Hernandez, ICML 2015]
@ Markov Chain Monte Carlo (MCMC)

o HMC
e Stochastic Gradient MCMC (SG-MCMC)
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Incorporating geometry

© Higher-order gradient information helps train DNNs when
employing optimization methods
o Quasi-Newton methods
o Rescale parameters so that the loss function has similar
curvature along all directions: Adagrad, Adadelta, Adam
and RMSprop algorithms.

@ MCMC

e Conventional MCMC: Riemann Manifold HMC
e Consider geometry in SG-MCMC?



Preliminaries

o Given data D = {d;}Y,, d; is i.i.d.; model parameters 0

p(6|D) o p(6) [T, p(d;|6)
—_—— ——
Posterior Prior Likelihood

For DNNs, d; £ (z;,y;): input z; € RP and output y; € V.

e Bayesian predictive estimate, for testing input x

p(ylz, D) = Epoip)[p(ylz, 0)] (1)

e In optimization, @pap = argmax log p(8|D).
The MAP approximates this expectation as

p(ylz, D) ~ p(y|x, Oniap) (2)

Parameter uncertainty is ignored.



Preliminaries

o SG-MCMC
o Stochastic Gradient Langevin Dynamics (SGLD)

N n
A6, ~ N (Vologp(8) + = 3" Vologp(dy|0)), 241 | (3)
=1

stochastic gradient from Dt = {d/,l yoee L, d, b
e Monte Carlo approximations to predictive distribution

p(ylz, D) Zp ylz,6;) (4)

o Closely related to Stochastic Optimization
o Stochastic Gradient Descent (SGD)

N n
Al = (Ve log p(0;) + . ,:21 Vo log p(d;, ‘01‘)) (5)



@ Stochastic gradient Riemannian Langevin dynamics
(SGRLD)

AG; ~ [G(Ot) (Vg logp(0:) + % i Ve log p(dy, ‘Ot)) + F(et)} (6)

+ G2 (0N (0,21
e What’s new in SGRLD?
o (G(0;): preconditioner ( e.g., preconditioning matrix)
o I'i(0) =3, (')Gé’igj(e): change of manifold curvature.
o In SGLD, G(6;) =1, and I'(8,) valishes.

e Problem: G(6;) is usually intractable



RMSprop as the Preconditioner

® §(6;D") =13  Vglogp(dy,|6,): sample mean of gradient.
@ Our preconditioner is updated using only the current
gradient, and only estimates a diagonal matrix

V(9t+1) = aV(Bt) + (1 — a)g(et;Dt) ® g(@t; Dt) , (7)

G(0141) = diag (1 @ (AL +y V(0t+1))> (8)

o Intuitive interpretations:

@ The preconditioner equalizes the gradient so that a constant
stepsize is adequate for all dimensions.

@ The stepsizes are adaptive, in that flat directions have larger
stepsizes while curved directions have smaller stepsizes.



pSGLD
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Finite-time Error Analysis

e Task: for a testing function ¢(8)

o True posterior expectation ¢ = [, ¢(8)p(6|D)d6
e MC Estimator: ¢ = é Zthl e:$(0:) at time St = ZtT:l €t

Theorem 1: MSE bound

N —\ 2
MSE E |:(¢ — ¢> :| S Bmse (9)
2 i T 2\2
A €t 2 ! (=1 )
=C B[l AV] + —+ =
2 kg% AST »S%
discretization error of numerical integrators

Es{imation error of stochastic gradients
v

e Asymptotic convergence (S — 00):
Decreasing-step-size pSGLD is asymptotically consistent with
true posterior expectation.



pSGLD
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Bias-Variance Tradeoff

e Risk of Estimator E[(¢ — ¢)?] = B2+ V.
Bias: B=¢, — ¢ (10)
Variance : V = E[(¢, — $)?] (11)

where ¢, = [ #(8)p,(0)dO as the ergodic average under
the invariant measure, p,(8), of the pSGLD.

o Increase ESS or decrease autocorrelation time leads to
better estimation

1 . .
V X offective sample size (ESS) X autocorrelation time
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Two Practical Techniques

@ Excluding I'(6;) term

o Corollary 1: ignoring I'(6;) produces a bias controlled by «
on the MSE

e More samples per unit time are generated, resulting in a
smaller variance on the estimation

o Dropped in [Ahn et al, ICML 2012] and [Teh et al, 2015]
© Thinning
o Corollary 2: MSE remains the same form.

o These thinned samples have a lower autocorrelation time
and can have a similar ESS.

Algorithm: Practical pSGLD is RMSprop with a Gaussian
noise, whose variance is proportion to the preconditioner.

[Ahn et al, ICML 2012] Bayesian posterior sampling via stochastic gradient fisher scoring

[Teh et al, 2015] Distributed Bayesian learning with expectation propagation and posterior server
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pSGLD dominates the “vanilla” SGLD in that it consistently shows a lower
error and autocorrelation time, particularly with larger stepsize.

} ). The goal is to estimate the covariance matrix.

pSGLD can adapt stepsizes acorrding to the geometry of different
dimensions.
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Simulation: 2D distribution

@ Even if the covariance matrix of a target distribution is mildly rescaled, we
do not have to choose a new stepsize for pSGLD.
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Exp. 1: Bayesian Logistic Regression

@ pSGLD generates much larger ESS compared to SGLD, especially when the
stepsize is large. Meanwhile, pSGLD provides smaller error in estimating
weights

@ Though pSGLD takes a bit more time to compute preconditioner, this is
compensated by obtaining more effective samples in given time. Therefore,
the variance in risk of prediction is reduced.
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Exp. 1: Bayesian Logistic Regression

@ Settings
@ a9a dataset: Ngrain = 32561, Niest = 16281, minibatch size = 50.
@ pSGLD converges in less than 4 x 103 iterations, while SGLD at least
needs double the time to reach this accuracy.
o Comparable with recent advances in stochastic gradient variation

inference
@ Results
17.5
----SGLD
Table: Test error on a9a. 7 —pSGLD
& 16.5
Method Test error g :
pSGLD 14.86% L’ﬁ 16
SGLD 14.86% % 15.5
DSVIT 15.20% 2
L-BFGS-SGVTF  14.91% 15
HFSCVT 15.16% 145
0 5000 10000 15000
lterations

Doubly Stochastic Variational Bayes for non-Conjugate Inference, Titsias et al. ICML 2014

y

Fast 2nd Order Stochastic Backpropagation for Variational Inference, Fan et al. NIPS 2015
kpropag
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Exp. 2: Feedforward Neural Networks

@ Settings: ReLU, 784-X-X-10, minibatch size = 100. After burnin and
thinning, 30 samples yield good esitmates

@ Results
@ SG-MCMC methods are better than their corresponding stochastic
optimization counterparts
@ Higher uncertainty leads to lower errors
o distilled pSGLD* can maintain good results

Table: Classification error of FNN on MNIST.

Test Error
Method 400-400  800-800  1200-1200
pSGLD (o2 = 100) 1.40% 1.26% 1.14%

pSGLD (02 = 1) 1.45% 1.32% 1.24%
distilled pSGLD 1.44% 1.40% 1.41%
SGLD 1.64% 1.41% 1.40%
RMSprop 1.59% 1.43% 1.39%
RMSspectral 1.65% 1.56% 1.46%
SGD 1.72% 1.47% 1.47%
BPB, Gaussian® 1.82% 1.99% 2.04%
BPB, Scale mixture®  1.32% 1.34% 1.32%

SGD, dropout® 1.51% 1.33% 1.36%

[ © 1 Weight Uncertainty in Neural Networks, Blundell et al. ICML 2015
[ * ] Bayesian Dark Knowledge, Korattikara et al. NIPS 2015
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Exp. 2: Feedforward Neural Network

@ Weights: Smaller variance in the prior imposes lower uncertainty, by making
the weights concentrate to 0; while larger variance in the prior leads to a
wider range of weight choices, thus higher uncertainty.

@ Converge: pSGLD consistently converges faster and to a better point than

SGLD
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Figure: FNN of size 1200-1200 on MNIST.
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Exp. 3: Convolutional Neural Networks

@ LeNet: 2 covolutional layers: 5 x 5 filter size with 32 and 64 channels

@ Comparable with some recent state-of-the-art CNN based systems

Method Test error 16 SGD
pSGLD 0.45% — ----SGLD
SGLD 0.71% 12 ——RMSprop
RMSprop 0.65% S —pSGLD
RMSspectral 0.78% w

SGD 0.82% 208

Stochastic Pooling 0.47% =

NIN + Dropout 0.47%

MN + Dropout 0.45% 0.4

5 10 15 20



Summary

Summary

o Algorithms
e pSGLD: preconditioned stochastic gradient Langevin
dynamics
e Error analysis and practical techniques
o Applications:
e Model uncertainty in deep neural networks
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