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Abstract

There has been recent interest in developing
scalable Bayesian sampling methods such as
stochastic gradient MCMC (SG-MCMC) and
Stein variational gradient descent (SVGD) for
big-data analysis. A standard SG-MCMC algo-
rithm simulates samples from a discrete-time
Markov chain to approximate a target distribu-
tion, thus samples could be highly correlated,
an undesired property for SG-MCMC. In con-
trary, SVGD directly optimizes a set of particles
to approximate a target distribution, and thus is
able to obtain good approximations with rela-
tively much fewer samples. In this paper, we
propose a principle particle-optimization frame-
work based on Wasserstein gradient flows to
unify SG-MCMC and SVGD, and to allow new
algorithms to be developed. Our framework
interprets SG-MCMC as particle optimization
on the space of probability measures, revealing
a strong connection between SG-MCMC and
SVGD. The key component of our framework
is several particle-approximate techniques to
efficiently solve the original partial differential
equations on the space of probability measures.
Extensive experiments on both synthetic data
and deep neural networks demonstrate the ef-
fectiveness and efficiency of our framework for
scalable Bayesian sampling.

1 INTRODUCTION
Bayesian methods have been playing an important role
in modern machine learning, especially in unsupervised
learning (Kingma and Welling, 2014; Li et al., 2017), and
recently in deep reinforcement learning (Houthooft et al.,
2016; Liu et al., 2017). When dealing with big data, two
lines of research directions have been developed to scale

up Bayesian methods, e.g., variational-Bayes-based and
sampling-based methods. Stochastic gradient Markov
chain Monte Carlo (SG-MCMC) is a family of scalable
Bayesian learning algorithms designed to efficiently sam-
ple from a target distribution such as a posterior distri-
bution (Welling and Teh, 2011; Chen et al., 2014; Ding
et al., 2014; Chen et al., 2015). In principle, SG-MCMC
generates samples from a Markov chain, which are used
to approximate a target distribution. Under a standard set-
ting, samples from SG-MCMC are able to match a target
distribution exactly with an infinite number of samples
(Teh et al., 2016; Chen et al., 2015). However, this is prac-
tically infeasible, as only a finite number of samples are
obtained. Although nonasymptotic approximation bounds
w.r.t. the number of samples have been investigated (Teh
et al., 2016; Vollmer et al., 2016; Chen et al., 2015), there
are no theory/algorithms to guide learning an optimal set
of fixed-size samples/particles. This is an undesirable
property of SG-MCMC, because in practice one often
seeks to learn the optimal samples of a finite size that best
approximate a target distribution.

A remedy for this issue is to adopt the idea of particle-
based sampling methods, where a set of particles (or
samples) are initialized from some simple distribution,
followed by iterative updates to better approximate a tar-
get distribution. The updating procedure is usually done
by optimizing some metrics such as a distance measure
between the target distribution and the current approx-
imation. There is not much work in this direction for
large-scale Bayesian sampling, with an outstanding rep-
resentative being the Stein variational gradient descent
(SVGD) (Liu and Wang, 2016a). In SVGD, the update
of particles are done by optimizing the KL-divergence
between the empirical particle distribution and a target
distribution, thus the samples are designed to be updated
optimally to reduce the KL-divergence in each iteration.
Because of this property, SVGD is found to perform bet-
ter than SG-MCMC when the number of samples used to
approximate a target distribution is limited, and has been
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applied to other problems such as deep generative models
(Feng et al., 2017) and deep reinforcement learning (Liu
et al., 2017; Haarnoja et al., 2017; Zhang et al., 2018b).

Though often achieving comparable performance in prac-
tice, little work has been done on investigating connec-
tions between SG-MCMC and SVGD, and on developing
particle-optimization schemes for SG-MCMC. In this
paper, adopting ideas from Waserstein-gradient-flow liter-
ature, we propose a unified particle-optimization frame-
work for scalable Bayesian sampling. The idea of our
framework is to work directly on the evolution of a den-
sity functions on the space of probability measures, e.g.,
the Fokker-Planck equation in SG-MCMC. To make the
evolution solution computationally feasible, particle ap-
proximations are adopted for densities, where particles
can be optimized during the evolution process. Both
SG-MCMC and SVGD are special cases of our frame-
work, and are shown to be highly related. Notably, sam-
pling with SG-MCMC becomes a deterministic particle-
optimization problem as SVGD on the space of probabil-
ity measures, overcoming the aforementioned correlated-
sample issue. Furthermore, we are able to develop new
unified particle-optimization algorithms by combing SG-
MCMC and SVGD, which is less prone to high-dimension
space and thus obtains better performance for large-scale
Bayesian sampling. We conduct extensive experiments on
both synthetic data and Bayesian learning of deep neural
networks, verifying the effectiveness and efficiency of our
proposed framework.

2 PRELIMINARIES
In this section, we review related concepts and algorithms
for SG-MCMC, SVGD, and Wasserstein gradient flows
(WGF) on the space of probability measures.

2.1 Stochastic gradient MCMC

Diffusion-based sampling methods Generating ran-
dom samples from a distribution (e.g., a posterior dis-
tribution) is one of the fundamental problems in Bayesian
statistics, which has many important applications in ma-
chine learning. Traditional Markov Chain Monte Carlo
methods (MCMC), such as the Metropolis–Hastings algo-
rithm (Metropolis et al., 1953) produces unbiased samples
from a desired distribution when the density function is
known up to a normalizing constant. However, most
of these methods are based on random walk proposals
which suffer from high dimensionality and often lead to
highly correlated samples. On the other hand, dynamics-
based sampling methods such as the Metropolis adjusted
Langevin algorithm (MALA) (Xifara et al., 2014) avoid
this high degree of correlation by combining dynamical

systems with the Metropolis step. In fact, these dynamical
systems are derived from a more general mathematical
technique called diffusion process, or more specifically,
Itó diffusion (Øksendal, 1985).

Specifically, our objective is to generate random samples
from a posterior distribution p(✓|X) / p(X |✓)p(✓),
where ✓ 2 Rr represents the model parameter, and
X , {xi}

N
i=1 represents the data. The canonical form is

p(✓|X) = (1/Z) exp(U(✓)), where U(✓) =

log p(X |✓) + log p(✓) ,
NX

i=1

log p(xi |✓) + log p(✓)

is referred to as the potential energy based on an i.i.d.
assumption of the model, and Z is the normalizing con-
stant. In Bayesian sampling, the posterior distribution
corresponds to the (marginal) stationary distribution of
a (continuous-time) Itó diffusion, defined as a stochastic
differential equation of the form:

d⇥t = F (⇥t)dt+ g(⇥t)dWt , (1)

where t is the time index; ⇥t 2 Rp represents the
full variables in a dynamical system, and ⇥t ◆ ✓t
(thus p � r) is potentially an augmentation of model
parameter ✓; Wt 2 Rp is p-dimensional Brownian
motion. Functions F : Rp

! Rp and g : Rp
!

Rp⇥ p are assumed to satisfy the Lipschitz continuity
condition (Ghosh, 2011). By Fokker-Planck equation
(or the forward Kolmogorov equation) (Kolmogoroff,
1931; Risken, 1989), when appropriately designing the
diffusion-coefficient functions F (·) and g(·), the station-
ary distribution of the corresponding Itó diffusion equals
the posterior distribution of interest, p(✓|X). For ex-
ample, the 1st-order Langevin dynamic defines ⇥ = ✓,
and F (⇥t) = 1

2r✓U(✓), g(⇥t) = Ir; the 2nd-order
Langevin diffusion defines ⇥ = (✓,q), and F (⇥t) =
⇣ q
�B q�r✓U(✓)

⌘
, g(⇥t) =

p
2B

⇣ 0 0
0 Ir

⌘
for a

scalar B > 0; q is an auxiliary variable known as the
momentum (Chen et al., 2014; Ding et al., 2014).

Let the density of ⇥t be µt, it is known µt is characterized
by the Fokker-Planck (FP) equation (Risken, 1989):

@µt

@t
= �r⇥ · (µtF (⇥t)) +r⇥r⇥ : (µt⌃(⇥t)) (2)

where ⌃(⇥t) , g(⇥t)g>(⇥t), a ·b , a> b for vec-
tors a and b, A :B , trace(A> B) for matrices A and
B. The FP equation is the key to develop our particle-
optimization framework for SG-MCMC. In the following,
we focus on the simplest case of 1st-order Langevin dy-
namics if not stated explicitly, though the derivations
apply to other variants.

Stochastic gradient MCMC SG-MCMC algorithms
are discretized numerical approximations of the Itó dif-



fusion (1). They mitigate the slow mixing and non-
scalability issues encountered in traditional MCMC algo-
rithms by i) adopting gradient information of the posterior
distribution, ii) using minibatches of the data in each iter-
ation of the algorithm to generate samples, and iii) ignor-
ing the rejection step as in standard MCMC. To make the
algorithms scalable in a big-data setting, three develop-
ments will be implemented based on the Itó diffusion: i)
define appropriate functions F and g in the Itó-diffusion
formula so that the (marginal) stationary distributions co-
incide with the target posterior distribution p(✓|X); ii)
replace F or g with unbiased stochastic approximations
to reduce the computational complexity, e.g., approximat-
ing F with a random subset of the data instead of using
the full data. For example, in the 1st-order Langevin dy-
namics,r✓U(✓) could be approximated by an unbiased
estimator with a subset of data:

r✓Ũ(✓) , r log p(✓) +
N

n

nX

i=1

r✓ log p(x⇡i |✓) (3)

where ⇡ is a size-n random subset of {1, 2, · · · , N}, lead-
ing to the first SG-MCMC algorithm in machine learning –
stochastic gradient Langevin dynamics (SGLD) (Welling
and Teh, 2011); and iii) solve the generally intractable
continuous-time Itô diffusions with a numerical method,
e.g., the Euler method (Chen et al., 2015). For example,
this leads to the following update in SGLD:

✓` = ✓`�1 +r✓Ũ(✓`�1)h+
p

2h �` ,

where h means the stepsize, ` indexes the samples, �` ⇠
N (0, I) is a random sample from an isotropic normal
distribution. After running the algorithm for L steps, the
collection of samples {✓`}L`=1 are used to approximate
the unknown posterior distribution 1

Z eU(✓).

2.2 Stein variational gradient descent
Different from SG-MCMC, SVGD initializes a set of par-
ticles which are iteratively updated so that the empirical
particle distribution approximates the posterior distribu-
tion. Specifically, we consider a set of particles {✓(i)

}
M
i=1

drawn from some distribution q. SVGD tries to update
these particles by doing gradient descent on the interactive
particle system via

✓(i)
 ✓(i) + h�(✓(i)), � = argmax

�2F

{
@

@h
KL(q[h�]||p)}

where � is a function perturbation direction chosen to
minimize the KL divergence between the updated density
q[h�] estimated by the particles and the posterior p(✓|X)
(p for short). Since KL(qkp) is convex in q, global opti-
mum of q = p can be guaranteed. SVGD considers F as
the unit ball of a vector-valued reproducing kernel Hilbert

space (RKHS) H associated with a kernel (✓,✓0). In
such as setting, Liu and Wang (2016b) shown:

�
@

@h
KL(q[h�]kp)|h=0 = E✓⇠q[trace(�p�(✓))], (4)

with �p�(✓) , r✓U(✓)>�(✓) +r✓ · �(✓),

where �p is called the Stein operator. Assuming that the
update function �(✓) is in a RKHS with kernel (·, ·), it
was shown in (Liu and Wang, 2016b) that (4) is maxi-
mized with:

�(✓) = E✓⇠q[(✓,✓
0)r✓U(✓) +r✓(✓,✓

0)]. (5)

When approximating the expectation E✓⇠q[·] with empiri-
cal particle distribution and adopting stochastic gradients,
we arrive at the following updates for the particles (`
denotes the iteration number): ✓(i)

`+1 = ✓(i)
` +

h
M

MX

j=1

h
(✓(j)

` ,✓(i)
` )r

✓
(j)
`

Ũ(✓(j)
` ) +r

✓
(j)
`

(✓(j)
` ,✓(i)

` )
i

(6)

SVGD applies updates (6) repeatedly, moving the sam-
ples to a target distribution p.

2.3 Wasserstein Gradient Flows
For a better motivation of WGF, we start from gradient
flows defined on the Euclidean space.

Gradient flows on the Euclidean space For a smooth
function E : Rr

! R, and a starting point ✓0 2 Rr, the
gradient flow of E(✓) is defined as the solution of the
differential equation: d✓

dt = �rE(✓(t)), s.t. ✓(0) = ✓0.
This is a standard Cauchy problem (Rulla, 1996), en-
dowed with a unique solution if rE is Lipschitz con-
tinuous. When E is non-differentiable, the gradient is
replaced with its subgradient, defined as @E(✓) , {p 2
Rr : F (✓0) � F (✓) + p ·(✓0

� ✓), 8✓0
2 Rr

}. Note
@E(✓) = {rE(✓)} if E is differentiable at ✓. In this
case, the gradient flow formula above is replaced with:
d✓
dt 2 �@E(✓(t)).

Wasserstein gradient flows Let P(⌦) denote the space
of probability measures on ⌦ ⇢ Rr. WGF is an exten-
sion of gradient flows in Euclidean space by lifting the
definition onto the space of probability measures. For-
mally, let P(⌦) be endowed with a Riemannian geometry
induced by the 2nd-order Wasserstein distance, i.e., the
curve length between two elements (two distributions) is
defined as:

W 2
2 (µ, ⌫) , inf

�

⇢Z

⌦⇥⌦

k✓ � ✓0k22d�(✓,✓0) : � 2 �(µ, ⌫)

�

where �(µ, ⌫) is the set of joint distributions over (✓,✓0)
such that the two marginals equal µ and ⌫, respectively.
The Wasserstein distance can be explained as an optimal-
transport problem, where one wants to transform elements



in the domain of µ to ⌫ with a minimum cost (Villani,
2008). The term k✓�✓0

k
2
2 represents the cost to transport

✓ in µ to ✓0 in ⌫, and can be replaced by a general metric
c(✓,✓0) in a metric space. If µ is absolutely continuous
w.r.t. the Lebesgue measure, there is a unique optimal
transport plan from µ to ⌫, i.e., a mapping T : Rr

! Rr

pushing elements in the domain of µ onto ⌫ satisfying
T#µ = ⌫. Here T#µ denotes the pushforward measure of
µ. The Wasserstein distance is equivalently reformulated
as: W 2

2 (µ, ⌫) , infT
�R

⌦ c(✓, T (✓))dµ(✓)
 

.

Let {µt}t2[0,1] be an absolutely continuous curve in P(⌦)
with finite second-order moments. We consider to define
the change of µt’s by investigating W 2

2 (µt, µt+h). Mo-
tivated by the Euclidean-space case, this is reflected by
a vector field, vt(✓) , limh!0

T (✓t)�✓t

h called the ve-

locity of the particle. A gradient flow can be defined on
P(⌦) correspondingly (Ambrosio et al., 2005).
Lemma 1 Let {µt}t2[0,1] be an absolutely-continuous

curve in P(⌦) with finite second-order moments. Then

for a.e. t 2 [0, 1], the above vector field vt defines a

gradient flow on P(⌦) as: @tµt +r · (vt µt) = 0.

The gradient flow describes the evolution of a functional
E, which is a lifted version of the function in the case of
Euclidean space in Section 2.3 to the space of probability
measures. E maps a probability measure µ to a real value,
i.e., E : P(⌦) ! R. We will focus on the case where
E is convex in this paper, which is enough considering
gradient flows for SG-MCMC and SVGD, though the the-
ory applies to a more general �-convex energy functional
setting (Ambrosio et al., 2005). It can be shown that vt

in Lemma 1 has the form vt = �r
�E
�µt

(µt) (Ambrosio
et al., 2005), where �E

�µt
is called the first variation of E at

µt. Based on this, gradient flows on P(⌦) can be written

@tµt = �r · (vt µt) = r ·

✓
µtr(

�E

�µt
(µt))

◆
. (7)

Remark 1 Intuitively, an energy functional E character-

izes the landscape structure (appearance) of the corre-

sponding manifold in P(⌦), and the gradient flow (7)
defines a geodesic path on this manifold. Usually, by

choosing appropriate E, the landscape is convex, e.g., for

the cases of both SG-MCMC and SVGD described be-

low. This provides a theoretical guarantee on the optimal

convergence of a gradient flow.

3 PARTICLE-OPTIMIZATION-
BASED SAMPLING

In this section, we interpret the continuous versions of
both SG-MCMC and SVGD as WGFs, followed by sev-
eral techniques for particle optimization in the next sec-
tion. In the following, µt denotes the distribution of ✓t.

3.1 SVGD as WGF

The continuous-time and infinite-particle limit of SVGD
with full gradients, denoted as SVGD1, is known to be
a special instance of the Vlasov equation in nonlinear
partial-differential-equation literature (Liu, 2017):

@tµt = r · ((W ⇤µt)µt) , (8)

where (W ⇤µt)(✓) ,
R
W(✓ � ✓0)µt(✓0)d✓0 is the con-

volutional operator applied for some function W : Rr
!

R. To specify SVGD1, we generalize the convolutional
operator, and consider W as a function with two input
arguments, i.e.,

(W ⇤µt)(✓) ,
Z

W(✓,✓0)µt(✓
0)d✓0 .

Under this setting, we can specify the function W(·, ·)
for SVGD1 as
W(✓,✓0) , r✓0 log p(✓0

|X)(✓0,✓) +r✓0(✓0,✓)

= r✓0 [p(✓0
|X)(✓,✓0)] /p(✓0) . (9)

As will be shown in Section 4, W in (9) naturally leads
to the SVGD algorithm, without the need to derive from
an RKHS perspective.
Proposition 2 The stationary distribution of (8) is

limt!1 µt , µ = p(✓|X).

To interpret SVGD1 as a WGF, we need to specify two
quantities, the energy functional and an underlying metric
to measure distances between density functions.

Energy functional and distance metric of SVGD1

There are two ways to derive energy functionals for
SVGD1, depending on the underlying metrics for proba-
bility distributions. When adopting the WGF framework
where W2 is used as the underlying metric, according to
(7), the energy functional Es must satisfy

r✓

✓
�Es

�µt
(µt)

◆
= W(✓,✓0) ⇤ µt (10)

= E✓0⇠µt

⇥
r✓0

⇥
p(✓0|X)K(✓,✓0)

⇤
/p(✓0|X)

⇤
.

In general, there is no close-form solution for the above
equation. Alternatively, Liu (2017) proved another form
of the energy functional by defining a different distance
metric on the space of probability measures, called H-
Wasserstein distance:
WH(q1, q2) , inf

�t,µt

⇢Z 1

0

k�tkHdt, s.t. µt = �r✓ · (�tµt),

µ0 = q1, µ1 = q2k} , (11)

where �t , W ⇤µt, and k · kH is the norm in the Hilbert
space induced by (·, ·). Under this metric, the underly-
ing energy functional is proved to be the standard KL-
divergence between µt and p, e.g.,

Es = KL(µt, p(·|X)).

As can be seen in Section 4, this interpretation allows one
to derive SVGD, a particle-optimization-based algorithm
to approximate the continuous-time equation (8).



3.2 SG-MCMC as WGF

The continuous-time limit of SG-MCMC, when consid-
ering gradients to be exact, corresponds to standard Itó
diffusions. We consider the Itó diffusion of SGLD for
simplicity, e.g.,

d✓t =
1

2
rU(✓t)dt+ dW . (12)

Energy functional The energy functional for SG-
MCMC is easily seen by noting that the corresponding FP
equation (2) is in the gradient-flow form of (7). Specifi-
cally, the energy functional E is defined as:

E(µ) , �
Z

U(✓)µ(✓)d✓
| {z }

E1

+

Z
µ(✓) log µ(✓)d✓

| {z }
E2

(13)

Note E2 is the energy functional of a pure Brownian
motion (e.g., U(✓) = 0 in (12)). We can verify (13) by
showing that it satisfies that FP equation. According to
(7), the first variation of E1 and E2 is calculated as

�E1

�µ
= �U,

�E2

�µ
= log µ+ 1 . (14)

Substituting (14) into (7) recovers the FP equation (2) for
the Itó diffusion (12).

4 PARTICLE OPTIMIZATION
An efficient way to solve the generally infeasible WGF
formula (7) is to adopt numerical methods with particle
approximation. With a little abuse of notation but for
conciseness, we do not distinguish subscripts t and ` for
the particle ✓, i.e., ✓t denotes the continuous-time ver-
sion of the particle, while ✓` denotes the discrete-time
version. We develop several techniques to approximate
different types of WGF for SG-MCMC and SVGD. In
particle approximation, the continuous density µt is ap-
proximated by a set of M particles (✓(i)

t )Mi=1 that evolve
over time t with weights (mi)Mi=1 such that

PM
i=1 mi = 1,

i.e., µt ⇡
PM

i=1 mi�(✓
(i)
t ), where �(✓(i)

t ) = 1 when
✓ = ✓(i)

t and 0 otherwise. Typically m0

is are chosen
at the beginning and fixed over time, thus we assume
mi = 1

M and rewrite µt ⇡
1
M

PM
i=1 �(✓

(i)
t ) in the fol-

lowing for simplicity. We investigate two types of particle-
approximation methods in the following, discrete gradient
flows and by blob methods.

Particle approximation by discrete gradient flows
Denote Ps(Rr) be the space of probability measures with
finite 2nd-order moments. Define the following optimiza-
tion problem with stepsize h:

Jh(µ) , arg min
⌫2Ps(Rd)

⇢
1

2h
W 2

2 (µ, ⌫) + E(⌫)

�
. (15)

A discrete gradient flow of the continuous one in (7) up to
time T is the composition of a sequence of the solutions
(µ̃`)

T/h
`=1 of (15), i.e.,

µ̃` , Jh(µ̃`�1) = Jh(Jh(· · ·µ0)) , J`
hµ0 . (16)

One can show that when h ! 0, the discrete gradient
flow (16) converges to the true flow (7) for all `. Specifi-
cally, let @E(µ) be the set of Wasserstein subdifferential
of E at µ, i.e., ⇠ 2 @E(µ) if @tµ = ⇠ is satisfied. De-
fine |@E|(µ) = min{k⇠kL2(µ) : ⇠ 2 @E(µ)} to be the
minimum norm of the elements in @E(µ). We have

Lemma 3 (Craig (2014)) Assume E is proper, coercive

and lower semicontinuous (specify in Section B of the

Supplementary Material (SM)). For an µ0 and t � 0, as

T
h !1, the discrete gradient sequence µ̃T/h , JT/h

h µ0

converge uniformly in t to a compact subset of [0,+1),
and W 2

2 (µ̃T/h, µT ) 
p
3|@E|(µ)

p
Th.

Lemma 3 suggests the discrete gradient flow can approxi-
mate the original WGF arbitrarily well if a small enough
stepsize h is adopted. Consequently, one solves (16)
through a sequence of optimization procedures to update
the particles. We will derive a particle-approximation
method for the W2 term in (15), which allows us to solve
SG-MCMC efficiently. However, this technique is not
applicable to SVGD, as we neither have an explicit form
of the energy functional in (10) when adopting the W2

metric, nor have an explicit form for the metric WH in
(11) when adopting the KL-divergence as the energy func-
tional. Fortunately, this can be solved by the second
approximation method called blob methods.

Particle approximation by blob methods The name
of blob methods comes from the classical fluids literature,
where instead of evolving the density in (7), one evolves
all particles on a grid with time-spacing h (Carrillo et al.,
2017). Specifically, note the function vt in (7) represents
velocity of particles via transportation map T , thus solv-
ing a WGF is equivalent to evolving the particles along
their velocity in each iteration. Formally, one can prove

Proposition 4 (Craig and Bertozzi (2016)) Let µ0 ⇡

1
M

PM
i=1 �(✓

(i)
0 ). Assume vt in (7) is well-defined and

continuous w.r.t. each ✓(i)
t at time t. Then solving the PDE

(7) reduces to solving a system of ordinary differential

equations for the locations of the Dirac masses:

d✓(i)
t /dt = �vt(✓

(i)
t ) . (17)

Proposition 4 suggests evolving each particle along the
directions defined by vt, eliminating the requirement to
know an explicit form of the energy functional. In the
following, we apply the above particle-optimization tech-
niques to derive algorithms for SVGD and SG-MCMC.



4.1 A particle-optimization algorithm for
SVGD

As mentioned above, discrete-gradient-flow approxima-
tion does not apply to SVGD. We thus rely on the blob
method. From Section 3.1, vt in SVGD is defined as
vt(✓) = (W ⇤µt)(✓). When µt(✓) is approximated by
particles, vt(✓

(i)
t ) is simplified as:

vt(✓
(i)
t ) =

1
M

MX

j=1

W(✓(i)
t ,✓(j)

t ) .

As a result, with the definition of W in (9), updating
{✓(i)

t } by time discretizing (17) recovers the update equa-
tions for standard SVGD in (6).

4.2 Particle-optimization algorithms for
SG-MCMC

Both the discrete-gradient-flow and the blob methods can
be applied for SG-MCMC, which are detailed below.

Particle optimization with discrete gradient flows
We first specify Lemma 3 in the case of SG-MCMC in
Lemma 5, which is known as the Jordan-Kinderlehrer-
Otto scheme (Jordan et al., 1998).

Lemma 5 (Jordan et al. (1998)) Assume that

p(✓t|X)  C1 is infinitely differentiable, and

kr✓ log p(✓|X)k  C2 (1 + C1 � log p(✓|X)) (8✓)
for some constants {C1, C2}. Let T = hK with K the

number of iterations, µ̃0 be an arbitrary distribution with

same support as p(✓|X), and {µ̃k}
K
k=1 be the solution

of the functional optimization problem:

µ̃k = arg min
µ2Ps(Rr)

KL (µkp) + 1
2h

W 2
2 (µ̃k�1, µ) . (18)

Then µ̃K converges to µT in the limit of h ! 0, i.e.,

limh!0 µ̃K = µT , where µT is the solution of the FP

equation (2) at time T .

According to Lemma 5, it is apparent that SG-MCMC can
be implemented by iteratively solving the optimization
problem in (18). However, particle approximations for
both terms in (18) are challenging. In the following, we
develop efficient techniques to solve the problem.

First, rewrite the optimization problem in (18) as

min
µ2Ps(Rr)

�Eµ[log p(✓|X)]
| {z }

F1

+Eµ[logµ] +
1

2h
W 2

2 (µ̃k�1, µ)
| {z }

F2

We aim at deriving gradient formulas for both the F1

and F2 terms under a particle approximation in order
to perform gradient descent for the particles. Let µ ⇡
1
M

PM
i=1 �(✓

(i)). The gradient of F1 is easily approxi-
mated as @F1

@✓(i)
⇡ �r✓(i) log p(✓(i)

|X) . (19)

To approximate the gradient for F2, let pij denote the
joint distribution of the particle-pair (✓(i),✓(j)

k�1). Note
Eµ[logµ] is minimized when the particles {✓(i)

} are uni-
formly distributed. In other words, the marginal distribu-
tion vector (

P
j pij)i is a uniform distribution. Combin-

ing Eµ[logµ] with the definition of W2, calculating F2 is
equivalent to solving the following optimization problem:

P ,{pij} = argmin
pi,j

X

i,j

pijdij (20)

s.t.
X

j

pij =
1
M

,
X

i

pij =
1
M

,

where dij , k✓(i)
� ✓(j)

k�1k
2. We can further enforce

the joint distribution {pij} to have maximum entropy by
introducing a regularization term Epij [log pij ], which is
stronger than the regularizer enforced for the marginal
distribution above. After introducing Lagrangian multipli-
ers {↵i,�i} to deal with the constraints in (20), we arrive
at the dual problem:

maxLD({pij}, {↵i}, {�i}) = �
X

i,j

pij log pij + pijdij

+
X

i

↵i(
X

j

pij �
1

M
) +

X

j

�j(
X

i

pij �
1

M
) ,

where � is the weight for the regularizer. The optimal
pij’s can be obtained by applying KKT conditions to set
the derivative w.r.t. pij to be zero, ending up with the
following form:

p⇤ij = uie
�dij/�vj ,

where ui , e�
1
2�

↵i
� , vj = e�

1
2�

�j
� . As a result, the

particle gradients on F2 can be approximated as

@F2

@✓(i)
⇡ �

P
j uivjdije�dij/�

@✓(i)
(21)

=
X

j

2uivj(
dij
�
� 1)e�dij/�(✓(i)

� ✓(j)
k�1) .

Theoretically, we need to adaptively update {ui, vj} as
well to ensure the constraints in (20). In practice, however,
we use a fixed scaling factor � to approximate uivj for
the sake of simplicity.

Particle gradients are obtained by combining (19) and
(21), which are then used to update the particles {✓(i)

}

by standard gradient descent. Intuitively, (19) encour-
ages particles move to local modes while (21) regularizes
particle interactions. Different from SVGD, our scheme
imposes both attractive and repulsive forces for the par-
ticles. Specifically, by inspecting (21), we can conclude
that: i) When ✓(i) is far from a previous particle ✓(j)

k ,
i.e., dij

� > 1, ✓(i) is pulled close to {✓(j)
k } with force

proportional to (dij

� � 1)e�dij/�; ii) when ✓(i) is close
enough to a previous particle ✓(j)

k , i.e., dij

� < 1, ✓(i) is
pushed away, preventing it from collapsing to ✓(j)

k .



Particle optimization with blob methods The idea of
blob methods can also be applied to particle approxi-
mation for SG-MCMC, which require the velocity vec-
tor field vt. According to (13), this is calculated as:
vt(✓) = �r✓

�(E1+E2)
�µ = �r✓U � r✓µ/µ. Unfor-

tunately, direct application of particle approximation is
infeasible because the term r✓µ is undefined with dis-
crete µ. To tackle this problem, we adopt the idea in
Carrillo et al. (2017) to approximate the energy functional
E2 in (13) as: E2 ⇡

R
µ(✓) log(µ ⇤ K)(✓)d✓, where

K(·, ·) is another kernel function to smooth out µ. Con-
sequently, based on Carrillo et al. (2017), the velocity vt

can be calculated as (details in Section C of the SM):

vt(✓) = �r✓U �
nX

j=1

r
✓(j)
t
K(✓,✓(j)

t )/
X

k

K(✓(j)
t ,✓(k)

t )

�

nX

j=1

r
✓(j)
t
K(✓,✓(j)

t )/
nX

k=1

K(✓,✓(k)
t ) (22)

Given vt, particle updates can be obtained by solving (17)
numerically as in SVGD. By inspecting the formula of
vt in (22), the last two terms both act as repulsive forces.
Interestingly, the mechanism is similar to SVGD, but with
adaptive force between different particle pairs.

5 THE GENERAL RECIPE

Based on the above development, a more general particle-
optimization framework is proposed by combining the
PDEs of both SG-MCMC and SVGD. As a result, we
propose the following PDE to drive evolution of densities

@µt

@t
=�r✓ · (µtF (✓t)) + �1r✓ · ((W ⇤µt)µt)

+ �2r✓r✓ :
�
µtg(✓t)g

>(✓t)
�
, (23)

where �1 and �2 are two constants. It is easily seen that
to ensure the stationary distribution of (23) to be equal to
p(✓|X), the following condition must be satisfied:

r✓· (p(✓|X)F (✓)) = �1r✓ · ((W ⇤p(✓|X))p(✓|X))

+ �2r✓r✓ :
�
p(✓|X)g(✓)g>(✓)

�
(24)

There are many feasible choices for the functions and pa-
rameters {F (✓),W, g(✓),�1,�2} to satisfy (24). How-
ever, the verification procedure might be complicated
given the present of a convolutional term in (24). We
recommend the following choices for simplicity:
• F (✓) = 1

2U(✓), W = 0, g(✓) = I and �2 = 1: this
reduces to the Wasserstein-based SGLD with parti-
cle optimization. Specifically, when the discrete-
gradient-flow approximation is adopted, the algo-
rithm is denoted as w-SGLD; whereas when the blob
method is adopted, it is denoted as w-SGLD-B.

• F (✓) = 0, g(✓) = 0, W is defined as (9): this
reduces to standard SVGD.

• F (✓) = 1
2U(✓), g(✓) = I, W is defined as (9), and

�2 = 1: this is the combination of SGLD and SVGD,
and is called particle interactive SGLD, denoted as
PI-SGLD or ⇡-SGLD.

It is easy to verify that condition (24) is satisfied for all
the above three particle-optimization algorithms. Further-
more, particle updates are readily developed by applying
either the discrete-gradient-flow or blob-based methods.

6 RELATED PARTICLE-BASED
MCMC METHODS

There have been related particle-based MCMC algo-
rithms. Representative methods are sequential Monte
Carlo (SMC) (Moral et al., 2006), particle MCMC (PM-
CMC) (Andrieu et al., 2010) and many variants. In SMC,
particles are sample from a proposal distribution, and the
corresponding weights are updated by a resampling step.
PMCMC extends SMC by sampling from an extended
distribution interacted with a MH-rejection step. Com-
pared to our framework, their proposal distributions are
typically hard to choose; furthermore, optimality of the
particles from both methods can not be guaranteed. Fur-
thermore, the methods are typically much more computa-
tionally expensive. Recently, Dai et al. (2016) proposed
a particle-based MCMC algorithm by approximating a
target distribution with weighted kernel density estimator,
which updates particle weights based on likelihoods of
the corresponding particles. This approach is theoretically
sound but lacks an underlying geometry interpretation. Fi-
nally, we note that w-SGLD has been successfully applied
to reinforcement learning recently for improved policy
optimization (Zhang et al., 2018a).

7 EXPERIMENTS
We verify our framework on a set of experiments, in-
cluding a number of toy experiments and applications to
Bayesian sampling of deep neural networks (DNNs).

7.1 Demonstrations
Toy Distributions We compare various sampling meth-
ods on multi-mode toy examples, i.e., SGLD, SVGD,
w-SGLD, w-SGLD-B and ⇡-SGLD. We aim to sample
from four unnormalized 2D densities p(z) / exp{U(z)},
with detailed functional form provided in the SM. We
optimize/sample 2000 particles to approximate target dis-
tributions. The results are shown in Figure 1. It can be
seen from Figure 1 that though SGLD maintains good
asymptotic properties, it is inaccurate to approximate dis-
tributions with only a few samples; in some case, the



samples cannot even cover all the modes. Interestingly,
all other particle-optimization-based algorithms success-
fully find all the modes and fit the distributions well. w-
SGLD is good at finding modes, but worse at modeling
the correct variance due to difficulty of controlling the
balance between attractive and repulsive forces between
particles. w-SGLD-B is better than w-SGLD at modeling
the distribution variance, performing similarly to SVGD
and ⇡-SGLD. Even though, we note that w-SGLD is very
useful when the number of particles is small, which fits a
distribution better, as shown in Section E of the SM.

Figure 1: Illustration of different algorithms on toy distribu-
tions. Each column is a distribution case. 1st row: Ground
truth; 2nd row: standard SGLD; 3rd row: w-SGLD; 4th row:
w-SGLD-B; 5th row: SVGD; 6th row: ⇡-SGLD.

Bayesian Logistic regression We next compare the
three variants of our framework (i.e.SVGD, w-SGLD
and w-SGLD-B) on a simple logistic-regression task with
quantitative evaluations. We use the same model, data
and experimental settings as Liu and Wang (2016a). The
Covertype dataset contains 581,012 data points and 54
features. We perform 5 runs for each setting and report
the mean of testing accuracies/log-likelihoods. Figure 2
plots both test accuracies and test log-likelihoods w.r.t. the

Iteration

Figure 2: Test accuracies (left) and log-likelihoods (right)
v.s. iterations for SVGD, w-SGLD and w-SGLD-B.

number of training iterations. It is clearly that while all
methods converge to the same accuracy/likelihood level,
both w-SGLD and w-SGLD-B converge slightly faster
than SVGD. In addition, w-SGLD and w-SGLD-B have
similar convergence behaviors, thus we only use w-SGLD
in the DNN experiments below.

Figure 3: Impact of W 2
2 factor � and parti-

cle number M .

Parameter
Sensitivity
Now we
study the
role of hyper-
parameters
in ⇡-SGLD:
the number
of particles
M and
the scaling
factor � to
replace the uivj-term in (21). We use the same dataset
and model as the above experiment. Figure 3 plots test
accuracies along with different parameter settings. As
expected, the best performance is achieved with appro-
priate scale of W 2

2 . The performance keep improving
with increasing particles. Interestingly, the Wasserstein
regularization is more important when the number of
particles is small, demonstrating the superiority when
approximate distributions with very few particles.

7.2 Applications on deep neural networks
We conduct experiments for Bayesian learning of DNNs.
Different from traditional optimization for DNNs, we are
interested in modeling weight uncertainty of neural net-
works, an important topic that has been well explored
(Hernández-Lobato and Adams, 2015; Blundell et al.,
2015a; Li et al., 2016; Louizos and Welling, 2016). We
assign priors to the weights, which are simple isotropic
Gaussian priors in our case, and perform posterior sam-
pling with the proposed particle-optimization-based al-
gorithms, as well as other standard algorithms such as
SGLD and SGD. We use the RMSprop optimizer for
feed-forward networks (FNN), and Adam for for con-
volutional neural networks (CNNs) and recurrent neural



networks (RNNs). For all methods, we use a RBF ker-
nel K(✓,✓0) = exp(�k✓�✓0

k
2
2/h), with the bandwidth

set to h = med2/ logM . Here med is the median of the
pairwise distance between particles. All experiments are
conducted on a single TITAN X GPU.

Feed-forward Neural Networks We perform the clas-
sification tasks on the standard MNIST dataset. A two-
layer model 784-X-X-10 with ReLU activation function
is used, with X being the number of hidden units for each
layer. The training epoch is set to 100. The test errors are
reported in Table 1. Not surprisingly, Bayesian methods
generally perform better than their optimization coun-
terparts. The new ⇡-SGLD which combines w-SGLD
and SVGD improves both methods with little computa-
tional overhead. In additional, w-SGLD seems to perform
better than SVGD in this case, partially due to a better
asymptotic property mentioned in (Liu, 2017). Further-
more, standard SGLD which is based on MCMC obtains
higher test errors compared to particle-optimization-based
algorithms, partially due to the correlated-sample issue
discussed in the introduction. See (Blundell et al., 2015b)
for details on the other methods in Table 1.

Table 1: Classification error of FNN on MNIST.

Test Error
Method 400-400 800-800
⇡-SGLD 1.36% 1.30%
w-SGLD 1.44% 1.37%
SVGD 1.53% 1.40%
SGLD 1.64% 1.41%
RMSprop 1.59% 1.43%
RMSspectral 1.65% 1.56%
SGD 1.72% 1.47%
BPB, Gaussian 1.82% 1.99%
SGD, dropout 1.51% 1.33%

Convolution Neural Networks We use the CIFAR-10
dataset to test our framework on CNNs. We adopt a CNN
of three convolution layers, using 3⇥3 filter size with
C64-C128-C256 channels, and 2⇥2 max-pooling after
each convolution layer. Our implementation adopts batch
normalization, drop out and data augmentation to improve
the performance. Training losses and test accuracies are
presented in Table 2. Consistently, ⇡-SGLD outperforms
all other algorithms in terms of test accuracy. ADAM ob-
tains a better training loss but worse test accuracy, indicat-
ing worse generalization ability of the optimization-based
methods compared to Bayesian methods.

Recurrent Neural Networks For RNNs, we run stan-
dard language models. Experiments are presented on
three publicly available corpora: APNEWS, IMDB and
BNC. APNEWS is a collection of Associated Press news
articles from 2009 to 2016. IMDB is a set of movie re-

Table 2: Classification error of CNN on CIFAR-10.

Method Training Loss Test Accuracy
ADAM 23.80 86.76%
SVGD 30.57 88.72%
SGLD 28.52 88.64%
w-SGLD 31.26 88.80%
⇡-SGLD 25.06 89.52%

views collected by Maas et al. (2011), and BNC BNC Con-
sortium (2007) is the written portion of the British Na-
tional Corpus, which contains excerpts from journals,
books, letters, essays, memoranda, news and other types
of text. These datasets can be downloaded from Github⇤.

Table 3: Perplexity of language model on three corpora.

Method APNEWS IMDB BNC
SGD 64.13 72.14 102.89

SGLD 63.01 68.12 95.13
SVGD 61.64 69.25 94.99

w-SGLD 61.22 67.41 93.68
⇡-SGLD 59.83 67.04 92.33

We follow the standard set up as Wang et al. (2017).
Specifically, we lower case all the word tokens and filter
out word tokens that occur less than 10 times. All the
datasets are divided into training, development and testing
sets. For the language model set up, we consider a 1-layer
LSTM model with 600 hidden units. The sequence length
is fixed to be 30. In order to alleviate overfitting, dropout
with a rate of 0.4 is used in each LSTM layer. Results in
terms of test perplexities are presented in Table 3. Again,
we see that ⇡-SGLD performs best among all algorithms,
and w-SGLD is slightly better than SVGD, both of which
are better than other algorithms.

8 CONCLUSION
We propose a unified particle-optimization framework
for large-scale Bayesian sampling. Our framework de-
fines gradient flows on the space of probability measures,
and uses particles to approximate the corresponding den-
sities. Consequently, solving gradient flows reduces to
optimizing particles on the parameter space. Our frame-
work includes the standard SVGD as a special case, and
also allows us to develop efficient particle-optimization
algorithms for SG-MCMC, which is highly related to
SVGD. Extensive experiments are conducted, demon-
strating the effectiveness and efficiency of our proposed
framework. Interesting future work includes designing
more practically efficient variants of the proposed particle-
optimization framework, and developing theory to study
general convergence behaviors of the algorithms, in addi-
tion to the asymptotic results presented in (Liu, 2017).

⇤https://github.com/jhlau/topically-driven-language-model
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